Advertisement

Journal of Neuro-Oncology

, Volume 81, Issue 2, pp 167–174 | Cite as

The role of 111indium-octreotide brain scintigraphy in the diagnosis of cranial, dural-based meningiomas

  • Narendra Nathoo
  • Kene Ugokwe
  • Albert S. Chang
  • Liang Li
  • Jeffrey Ross
  • John H. Suh
  • Michael A. Vogelbaum
  • Gene H. Barnett
Clinical - patient studies

Abstract

Objective

Meningiomas are common brain tumors with somatostatin receptors that bind octreotide. We report the use of 111indium-octreotide brain scintigraphy (OBS) for the non-invasive differentiation of meningiomas from other cranial dural-based pathology.

Methods

A retrospective analysis of our experience with OBS for non-invasive identification of meningiomas was performed. Two neuroradiologists, blinded to clinical data, utilized a standardized grading scheme to define the uptake of octreotide at 6 and 24 h post-administration. The correlation between (18) F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET), magnetic resonance imaging (MRI) scans, and octreotide uptake was assessed.

Results

The cohort consisted of 50 patients having a mean age of 62.4 years and a median follow-up time of 24 months. Management consisted of biopsy (n = 4); resection (n = 10); observation (n = 16); radiosurgery (n = 21); and external beam radiotherapy (n = 3). OBS was correlated with MRI (n = 50); FDG-PET brain studies (n = 38); histology (n = 14), and angiography (n = 1). In cases where definitive diagnosis could be made, the sensitivity, specificity, positive and negative predictor values for OBS alone were 100; 50; 75; and 100, respectively. OBS provided false positive data in 3 patients (metastasis, chronic inflammation, lymphoma). Use of OBS with MRI to differentiate meningiomas from other lesions was highly significant (P < 0.001). FDG-PET correctly identified malignant pathology with 100% sensitivity and specificity.

Conclusion

OBS may increase the diagnostic specificity of conventional MRI when differentiating meningioma from other dural-based pathologies, while the addition of FDG-PET differentiates benign from malignant lesions.

Keywords

Brain Dura Meningioma Octreotide Scintigraphy FDG-PET 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We thank Ms. Christine Moore, CME Department of Neurosurgery, Cleveland Clinic Foundation, for her assistance with the preparation of this manuscript.

References

  1. 1.
    Krenning EP, Bakker WH, Breeman WA, Koper JW, Kooij PP, Ausema L, Lameris JS, Reubi JC, Lamberts SW (1998) Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 4;1(8632):242–244Google Scholar
  2. 2.
    Barth A, Haldemann AR, Reubi JC, Godoy N, Rosler H, Kinser JA, Seiler RW (1996) Noninvasive differentiation of meningiomas from other brain tumours using combined 111Indium-Octreotide/99 mtechnetium-DTPA brain scintigraphy. Acta Neurochir (Wien) 138(10):1179–1185CrossRefGoogle Scholar
  3. 3.
    Hildebrandt G, Scheidhauer K, Luyken C, Schicha H, Klug N, Dahms P, Krisch B (1994) High sensitivity of the in vivo detection of somatostatin receptors by 111Indium (DTPA-Octreotide)-scintigraphy in meningioma patients. Acta Neurochir (Wien) 126(2–4):63–71CrossRefGoogle Scholar
  4. 4.
    Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, van Hagen M, Postema PT, de Jong M, Reubi JC et al (1993) Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 20(8):716–731PubMedCrossRefGoogle Scholar
  5. 5.
    Maini CL, Tofani A, Sciuto R, Carapella C, Cioffi R, Crecco M (1993) Somatostatin receptors in meningiomas: a scintigraphic study using 111In-DTPA-D-Phe-1-octreotide. Nucl Med Commun 14(7):550–558PubMedGoogle Scholar
  6. 6.
    Bohuslavizki KH, Brenner W, Braunsdorf WE, Behnke A, Tinnemeyer S, Hugo HH, Jahn N, Wolf H, Sippel C, Clausen M, Mehdorn HM, Henze E (1996) Somatostatin receptor scintigraphy in the differential diagnosis of meningioma. Nucl Med Commun 17(4):302–310PubMedCrossRefGoogle Scholar
  7. 7.
    Klutmann S, Bohuslavizki KH, Brenner W, Behnke A, Tietje N, Kroger S, Hugo HH, Mehdorn HM, Clausen M, Henze E (1998) Somatostatin receptor scintigraphy in postsurgical follow-up examinations of meningioma. J Nucl Med 39(11):1913–1917PubMedGoogle Scholar
  8. 8.
    Reubi JC, Lang W, Maurer R, Koper JW, Lamberts SW (1987) Distribution and biochemical characterization of somatostatin receptors in tumors of the human central nervous system. Cancer Res 47(21):5758–5764PubMedGoogle Scholar
  9. 9.
    Reubi JC, Maurer R, Klijn JG, Stefanko SZ, Foekens JA, Blaauw G, Blankenstein MA, Lamberts SW (1986) High incidence of somatostatin receptors in human meningiomas: biochemical characterization. J Clin Endocrinol Metab 63(2):433–438PubMedCrossRefGoogle Scholar
  10. 10.
    Arena S, Barbieri F, Thellung S, Pirani P, Corsaro A, Villa V, Dadati P, Dorcaratto A, Lapertosa G, Ravetti JL, Spaziante R, Schettini G, Florio T (2004) Expression of somatostatin receptor mRNA in human meningiomas and their implication in in vitro antiproliferative activity. J␣Neurooncol 66(1–2):155–166PubMedCrossRefGoogle Scholar
  11. 11.
    Patel YC, Greenwood MT, Warszynska A, Panetta R, Srikant CB (1994) All five cloned human somatostatin receptors (hSSTR1-5) are functionally coupled to adenyl cyclase. Biochem Biophys Res Commun 198(2):605–612PubMedCrossRefGoogle Scholar
  12. 12.
    Kwekkeboom DJ, Krenning EP (2002) Somatostatin receptor imaging. Semin Nucl Med 32(2):84–91PubMedCrossRefGoogle Scholar
  13. 13.
    Wild D, Schmitt JS, Ginj M, Macke HR, Bernard BF, Krenning E, De Jong M, Wenger S, Reubi JC (2003) DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging 30(10):1338–1347PubMedCrossRefGoogle Scholar
  14. 14.
    Ginj M, Chen J, Walter MA, Eltschinger V, Reubi JC, Maecke HR (2005) Preclinical evaluation of new and highly potent analogues of octreotide for predictive imaging and targeted radiotherapy. Clin Cancer Res 11(3):1136–1145PubMedGoogle Scholar
  15. 15.
    Reubi JC, Macke HR, Krenning EP (2005) Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 46 (Suppl 1):67S–75SPubMedGoogle Scholar
  16. 16.
    Di Chiro G, Hatazawa J, Katz DA, Rizzoli HV, De Michele DJ (1987) Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiology 164(2):521–526PubMedGoogle Scholar
  17. 17.
    Reubi JC, Horisberger U, Lang W, Koper JW, Braakman R, Lamberts SW (1989) Coincidence of EGF receptors and somatostatin receptors in meningiomas but inverse, differentiation-dependent relationship in glial tumors. Am J Pathol 134(2):337–344PubMedGoogle Scholar
  18. 18.
    Chahlavi A, Staugaitis SM, Yahya R, Vogelbaum M (2005) Intracranial collision tumor mimicking an octreotide-SPECT positive and FDG-PET negative meningioma: case report. J␣Clin Neurosci 12(6):720–723PubMedCrossRefGoogle Scholar
  19. 19.
    Flamen P, Bossuyt A, De Greve J, Pipeleers-Marichal M, Keuppens F, Somers G (1993) Imaging of renal cell cancer with radiolabelled octreotide. Nucl Med Commun 14(10):873–877PubMedGoogle Scholar
  20. 20.
    Montravers F, Rousseau C, Doublet JD, Gattengo B, Allard S, Fouret P, Bernaudin JF, Thibault P, Talbot JN (1998) In vivo inaccessibility of somatostatin receptors to 111In-pentreotide in primary renal cell carcinoma. Nucl Med Commun 19(10):953–961PubMedCrossRefGoogle Scholar
  21. 21.
    Maini CL, Sciuto R, Tofani A, Ferraironi A, Carapella CM, Occhipinti E, Mottolese M, Crecco M (1995) Somatostatin receptor imaging in CNS tumours using 111In-Octreotide. Nucl Med Commun 16(9):756–766PubMedCrossRefGoogle Scholar
  22. 22.
    Haldemann AR, Rosler H, Barth A, Waser B, Geiger L, Godoy N, Markwalder RV, Seiler RW, Sulzer M, Reubi JC (1995) Somatostatin receptor scintigraphy in central nervous system tumors: role of blood–brain barrier permeability. J␣Nucl Med 36(3):403–410PubMedGoogle Scholar
  23. 23.
    Klutmann S, Bohuslavizki KH, Tietje N, Kroger S, Behnke A, Brenner W, Mester J, Henze E, Clausen M (1999) Clinical value of 24-hour delayed imaging in somatostatin receptor scintigraphy for meningioma. J Nucl Med 40(8):1246–1251PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Narendra Nathoo
    • 1
    • 5
  • Kene Ugokwe
    • 1
    • 5
  • Albert S. Chang
    • 2
  • Liang Li
    • 3
  • Jeffrey Ross
    • 2
    • 5
  • John H. Suh
    • 4
    • 5
  • Michael A. Vogelbaum
    • 1
    • 5
  • Gene H. Barnett
    • 1
    • 5
  1. 1.Department of NeurosurgeryThe Taussig Cancer Center, The Cleveland Clinic FoundationClevelandUSA
  2. 2.Department of NeuroradiologyThe Taussig Cancer Center, The Cleveland Clinic FoundationClevelandUSA
  3. 3.Department of Biostatistics and EpidemiologyThe Taussig Cancer Center, The Cleveland Clinic FoundationClevelandUSA
  4. 4.Department of Radiation OncologyThe Taussig Cancer Center, The Cleveland Clinic FoundationClevelandUSA
  5. 5.Brain Tumor InstituteThe Taussig Cancer Center, The Cleveland Clinic FoundationClevelandUSA

Personalised recommendations