Skip to main content

Advertisement

Log in

The role of 111indium-octreotide brain scintigraphy in the diagnosis of cranial, dural-based meningiomas

  • Clinical - patient studies
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Objective

Meningiomas are common brain tumors with somatostatin receptors that bind octreotide. We report the use of 111indium-octreotide brain scintigraphy (OBS) for the non-invasive differentiation of meningiomas from other cranial dural-based pathology.

Methods

A retrospective analysis of our experience with OBS for non-invasive identification of meningiomas was performed. Two neuroradiologists, blinded to clinical data, utilized a standardized grading scheme to define the uptake of octreotide at 6 and 24 h post-administration. The correlation between (18) F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET), magnetic resonance imaging (MRI) scans, and octreotide uptake was assessed.

Results

The cohort consisted of 50 patients having a mean age of 62.4 years and a median follow-up time of 24 months. Management consisted of biopsy (n = 4); resection (n = 10); observation (n = 16); radiosurgery (n = 21); and external beam radiotherapy (n = 3). OBS was correlated with MRI (n = 50); FDG-PET brain studies (n = 38); histology (n = 14), and angiography (n = 1). In cases where definitive diagnosis could be made, the sensitivity, specificity, positive and negative predictor values for OBS alone were 100; 50; 75; and 100, respectively. OBS provided false positive data in 3 patients (metastasis, chronic inflammation, lymphoma). Use of OBS with MRI to differentiate meningiomas from other lesions was highly significant (P < 0.001). FDG-PET correctly identified malignant pathology with 100% sensitivity and specificity.

Conclusion

OBS may increase the diagnostic specificity of conventional MRI when differentiating meningioma from other dural-based pathologies, while the addition of FDG-PET differentiates benign from malignant lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Krenning EP, Bakker WH, Breeman WA, Koper JW, Kooij PP, Ausema L, Lameris JS, Reubi JC, Lamberts SW (1998) Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 4;1(8632):242–244

    Google Scholar 

  2. Barth A, Haldemann AR, Reubi JC, Godoy N, Rosler H, Kinser JA, Seiler RW (1996) Noninvasive differentiation of meningiomas from other brain tumours using combined 111Indium-Octreotide/99 mtechnetium-DTPA brain scintigraphy. Acta Neurochir (Wien) 138(10):1179–1185

    Article  CAS  Google Scholar 

  3. Hildebrandt G, Scheidhauer K, Luyken C, Schicha H, Klug N, Dahms P, Krisch B (1994) High sensitivity of the in vivo detection of somatostatin receptors by 111Indium (DTPA-Octreotide)-scintigraphy in meningioma patients. Acta Neurochir (Wien) 126(2–4):63–71

    Article  CAS  Google Scholar 

  4. Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, van Hagen M, Postema PT, de Jong M, Reubi JC et al (1993) Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 20(8):716–731

    Article  PubMed  CAS  Google Scholar 

  5. Maini CL, Tofani A, Sciuto R, Carapella C, Cioffi R, Crecco M (1993) Somatostatin receptors in meningiomas: a scintigraphic study using 111In-DTPA-D-Phe-1-octreotide. Nucl Med Commun 14(7):550–558

    PubMed  CAS  Google Scholar 

  6. Bohuslavizki KH, Brenner W, Braunsdorf WE, Behnke A, Tinnemeyer S, Hugo HH, Jahn N, Wolf H, Sippel C, Clausen M, Mehdorn HM, Henze E (1996) Somatostatin receptor scintigraphy in the differential diagnosis of meningioma. Nucl Med Commun 17(4):302–310

    Article  PubMed  CAS  Google Scholar 

  7. Klutmann S, Bohuslavizki KH, Brenner W, Behnke A, Tietje N, Kroger S, Hugo HH, Mehdorn HM, Clausen M, Henze E (1998) Somatostatin receptor scintigraphy in postsurgical follow-up examinations of meningioma. J Nucl Med 39(11):1913–1917

    PubMed  CAS  Google Scholar 

  8. Reubi JC, Lang W, Maurer R, Koper JW, Lamberts SW (1987) Distribution and biochemical characterization of somatostatin receptors in tumors of the human central nervous system. Cancer Res 47(21):5758–5764

    PubMed  CAS  Google Scholar 

  9. Reubi JC, Maurer R, Klijn JG, Stefanko SZ, Foekens JA, Blaauw G, Blankenstein MA, Lamberts SW (1986) High incidence of somatostatin receptors in human meningiomas: biochemical characterization. J Clin Endocrinol Metab 63(2):433–438

    Article  PubMed  CAS  Google Scholar 

  10. Arena S, Barbieri F, Thellung S, Pirani P, Corsaro A, Villa V, Dadati P, Dorcaratto A, Lapertosa G, Ravetti JL, Spaziante R, Schettini G, Florio T (2004) Expression of somatostatin receptor mRNA in human meningiomas and their implication in in vitro antiproliferative activity. J␣Neurooncol 66(1–2):155–166

    Article  PubMed  Google Scholar 

  11. Patel YC, Greenwood MT, Warszynska A, Panetta R, Srikant CB (1994) All five cloned human somatostatin receptors (hSSTR1-5) are functionally coupled to adenyl cyclase. Biochem Biophys Res Commun 198(2):605–612

    Article  PubMed  CAS  Google Scholar 

  12. Kwekkeboom DJ, Krenning EP (2002) Somatostatin receptor imaging. Semin Nucl Med 32(2):84–91

    Article  PubMed  Google Scholar 

  13. Wild D, Schmitt JS, Ginj M, Macke HR, Bernard BF, Krenning E, De Jong M, Wenger S, Reubi JC (2003) DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging 30(10):1338–1347

    Article  PubMed  CAS  Google Scholar 

  14. Ginj M, Chen J, Walter MA, Eltschinger V, Reubi JC, Maecke HR (2005) Preclinical evaluation of new and highly potent analogues of octreotide for predictive imaging and targeted radiotherapy. Clin Cancer Res 11(3):1136–1145

    PubMed  CAS  Google Scholar 

  15. Reubi JC, Macke HR, Krenning EP (2005) Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 46 (Suppl 1):67S–75S

    PubMed  CAS  Google Scholar 

  16. Di Chiro G, Hatazawa J, Katz DA, Rizzoli HV, De Michele DJ (1987) Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiology 164(2):521–526

    PubMed  CAS  Google Scholar 

  17. Reubi JC, Horisberger U, Lang W, Koper JW, Braakman R, Lamberts SW (1989) Coincidence of EGF receptors and somatostatin receptors in meningiomas but inverse, differentiation-dependent relationship in glial tumors. Am J Pathol 134(2):337–344

    PubMed  CAS  Google Scholar 

  18. Chahlavi A, Staugaitis SM, Yahya R, Vogelbaum M (2005) Intracranial collision tumor mimicking an octreotide-SPECT positive and FDG-PET negative meningioma: case report. J␣Clin Neurosci 12(6):720–723

    Article  PubMed  Google Scholar 

  19. Flamen P, Bossuyt A, De Greve J, Pipeleers-Marichal M, Keuppens F, Somers G (1993) Imaging of renal cell cancer with radiolabelled octreotide. Nucl Med Commun 14(10):873–877

    PubMed  CAS  Google Scholar 

  20. Montravers F, Rousseau C, Doublet JD, Gattengo B, Allard S, Fouret P, Bernaudin JF, Thibault P, Talbot JN (1998) In vivo inaccessibility of somatostatin receptors to 111In-pentreotide in primary renal cell carcinoma. Nucl Med Commun 19(10):953–961

    Article  PubMed  CAS  Google Scholar 

  21. Maini CL, Sciuto R, Tofani A, Ferraironi A, Carapella CM, Occhipinti E, Mottolese M, Crecco M (1995) Somatostatin receptor imaging in CNS tumours using 111In-Octreotide. Nucl Med Commun 16(9):756–766

    Article  PubMed  CAS  Google Scholar 

  22. Haldemann AR, Rosler H, Barth A, Waser B, Geiger L, Godoy N, Markwalder RV, Seiler RW, Sulzer M, Reubi JC (1995) Somatostatin receptor scintigraphy in central nervous system tumors: role of blood–brain barrier permeability. J␣Nucl Med 36(3):403–410

    PubMed  CAS  Google Scholar 

  23. Klutmann S, Bohuslavizki KH, Tietje N, Kroger S, Behnke A, Brenner W, Mester J, Henze E, Clausen M (1999) Clinical value of 24-hour delayed imaging in somatostatin receptor scintigraphy for meningioma. J Nucl Med 40(8):1246–1251

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Ms. Christine Moore, CME Department of Neurosurgery, Cleveland Clinic Foundation, for her assistance with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene H. Barnett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nathoo, N., Ugokwe, K., Chang, A.S. et al. The role of 111indium-octreotide brain scintigraphy in the diagnosis of cranial, dural-based meningiomas. J Neurooncol 81, 167–174 (2007). https://doi.org/10.1007/s11060-006-9210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-006-9210-5

Keywords

Navigation