Advertisement

Journal of Neuro-Oncology

, Volume 81, Issue 1, pp 27–38 | Cite as

Distinct patterns of hypoxic expression of carbonic anhydrase IX (CA IX) in human malignant glioma cell lines

  • Harun M. Said
  • Adrian Staab
  • Carsten Hagemann
  • Giles H. Vince
  • Astrid Katzer
  • Michael Flentje
  • Dirk Vordermark
Laboratory Investigation

Abstract

The hypoxia-inducible enzyme carbonic anhydrase IX (CA IX) has recently been discussed as a surrogate marker of tumor hypoxia, an indicator of prognosis and a potential therapeutic target in malignant glioma. To characterize patterns of expression of CA IX in human malignant glioma cells, we studied CA IX protein, CA9 mRNA and hypoxia-inducible factor-1α (HIF-1α) protein levels in U87-MG, U251, U373 and GaMG cells exposed to in vitro hypoxia (1, 6 or 24 h at 5%, 1% or 0.1% O2). All cell lines displayed a strong hypoxic induction of CA9 mRNA in response to prolonged severe hypoxia with cell-line specific patterns at moderate to mild hypoxia and shorter treatment times. Only U87-MG exhibited a strong constitutive, normoxic expression of CA IX protein without a detectable change under hypoxia. In U251 and GaMG cell lines, a marked induction of CA IX protein in response to severe hypoxia was seen. CA IX changes under severe hypoxia and the inhibitory effect of the glycolysis inhibitor iodoacetate (IAA, 50 µM) on hypoxic CA IX overexpression were paralleled by the results for HIF-1α protein. Therefore, immunohistochemical CA IX staining in human malignant glioma specimens can result from low oxygen concentrations or constitutive, oncogene-related, overexpression both of which may be prognostically relevant.

Keywords

CA IX HIF-1α Glioma Oxygen Tumor Hypoxia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported in part by a grant from the Deutsche Forschungsgemeinschaft (to DV) and by IZKF Wuerzburg (to CH and GHV). We thank Prof. Dr. Ulf Rapp, MSZ Institute, University of Würzburg, for the possibility to use the radioactivity laboratories and Bayer Healthcare Co. for provision of the M75 monoclonal antibody.

References

  1. 1.
    Höckel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515PubMedGoogle Scholar
  2. 2.
    Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz L, Dewhirst MW (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941–943PubMedGoogle Scholar
  3. 3.
    Huang LE, Arany Z, Livingston DM, Bunn HF (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its α subunit. J Biol Chem 271:32253–32259PubMedCrossRefGoogle Scholar
  4. 4.
    Kallio PJ, Pongratz I, Gradin K, McGuire J, Poellinger L (1997) Activation of hypoxia-inducible factor 1α: posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proc Natl Acad Sci USA 94:5667–5672PubMedCrossRefGoogle Scholar
  5. 5.
    Lal A, Peters H, St Croix B, Haroon ZA, Dewhirst MW, Strausberg RL, Kaanders JH, van der Kogel AJ, Riggins GJ (2001) Transcriptional response to hypoxia in human tumors. J Natl Cancer Inst 93:1137–1343CrossRefGoogle Scholar
  6. 6.
    Pastorek J, Pastorekova S, Callebaut I, Mornon JP, Zelnik V, Opavskky R, Zatovicova M, Liao S, Portetelle D, Stanbridge EJ, Zavada J, Burny A, Kettmann R (1994) Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene 9:2788–2888Google Scholar
  7. 7.
    Zavada J, Zavadova Z, Pastorekova S, Ciampor F, Pastorek J, Zelník V (1993) Expression of MaTu–MN protein in human tumor cultures and in clinical specimens. Int J Cancer 54:268–274PubMedGoogle Scholar
  8. 8.
    Pastorekova S, Zavada J (2004) Carbonic anhydrase IX (CA IX) as a potential target for cancer therapy. Cancer Ther 2:245–262Google Scholar
  9. 9.
    Hilvo M, Rafajova M, Pastorekova S, Pastorek J, Parkkila S (2004) Expression of carbonic anhydrase IX in mouse tissues. J Histochem Cytochem 52:1313–1322PubMedCrossRefGoogle Scholar
  10. 10.
    Ivanov S, Liao SY, Ivanova A, Danilkovich-Miagkova A, Tarasova N, Weirich G, Merrill MJ, Proescholdt MA, Oldfield EH, Lee J, Zavada J, Waheed A, Sly W, Lerman MI, Stanbridge EJ (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158:905–919PubMedGoogle Scholar
  11. 11.
    Collingridge DR, Piepmaier JM, Rockwell S, Knisely JP (1999) Polarographic measurements of oxygen tension in human glioma and surrounding peritumoural brain tissue. Radiother Oncol 53:127–131PubMedCrossRefGoogle Scholar
  12. 12.
    Evans SM, Judy KD, Dunphy I, Jenkins WT, Hwang WT, Nelson PT, Lustig RA, Jenkins K, Magarelli DP, Hahn SM, Collins RA, Grady MS, Koch CJ (2004) Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 10:8177–8184PubMedCrossRefGoogle Scholar
  13. 13.
    Vordermark D (2005) Significance of hypoxia in malignant glioma. Re: Evans et al. Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 10:8177–8184; Clin Cancer Res 11:3966–3967Google Scholar
  14. 14.
    Proescholdt MA, Mayer C, Kubitza M, Schubert T, Liao SY, Stanbridge EJ, Ivanov S, Oldfield EH, Brawanski A, Merrill MJ (2005) Expression of hypoxia-inducible carbonic anhydrases in brain tumors. Neuro-oncol 7:465–475PubMedCrossRefGoogle Scholar
  15. 15.
    Haapasalo JA, Nordfors KM, Hilvo M, Rantala IJ, Soini Y, Parkkila AK, Pastorekova S, Pastorek J, Parkkila SM, Haapsalo HK (2006) Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis. Clin Cancer Res 12:473–477PubMedCrossRefGoogle Scholar
  16. 16.
    Akslen LA, Andersen KJ, Bjerkvig R (1988) Characteristics of human and rat glioma cells grown in a defined medium. Anticancer Res 8:797–803PubMedGoogle Scholar
  17. 17.
    Vordermark D, Katzer A, Baier K, Kraft P, Flentje M (2004) Cell-type-specific association of hypoxia-inducible factor-1alpha (HIF-1alpha) protein accumulation and radiobiologic tumor hypoxia. Int J Radiat Oncol Biol Phys 58:1242–1250PubMedGoogle Scholar
  18. 18.
    Vordermark D, Kaffer A, Riedl S, Katzer A, Flentje M (2005) Characterization of carbonic anhydrase IX (CA IX) as an endogenous marker of chronic hypoxia in live human tumor cells. Int J Radiat Oncol Biol Phys 61:1197–1207PubMedCrossRefGoogle Scholar
  19. 19.
    Chomczynski P, Sacchi V (1987) Single-step method of RNA isolation by acidic guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159PubMedCrossRefGoogle Scholar
  20. 20.
    Said HM, Katzer A, Flentje M, Vordermark D (2005) Response of the plasma hypoxia marker osteopontin to in vitro hypoxia in human tumor cells. Radiother Oncol 76:200–205PubMedCrossRefGoogle Scholar
  21. 21.
    Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47PubMedCrossRefGoogle Scholar
  22. 22.
    Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732PubMedCrossRefGoogle Scholar
  23. 23.
    Wykoff C, Beasley N, Watson P, Turner L, Pastorek J, Wilson G, Turley H, Maxwell P, Pugh C, Ratcliffe P, Harris A (2000) Hypoxia-inducible regulation of tumor-associated carbonic anhydrases. Cancer Res 60:7075–7083PubMedGoogle Scholar
  24. 24.
    Olive PL, Aquino-Parsons C, MacPhail SH, Liao SY, Raleigh JA, Lerman MI, Stanbridge EJ (2001) Carbonic anhydrase 9 as an endogenous marker for hypoxic cells in cervical cancer. Cancer Res 61:8924–8929PubMedGoogle Scholar
  25. 25.
    Svastová E, Hulíková A, Rafajová M, Zatovicová M, Gibadulinová A, Casini A, Cecchi A, Scozzafava A, Supuran CT, Pastorek J, Pastoreková S (2004) Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett 577:439–445PubMedCrossRefGoogle Scholar
  26. 26.
    Ito H, Kanzawa T, Miyoshi T, Hirohata S, Kyo S, Iwamaru A, Aoki H, Kondo Y, Kondo S (2005) Therapeutic efficacy of PUMA for malignant glioma cells regardless of p53 status. Hum Gene Ther 16:685–698PubMedCrossRefGoogle Scholar
  27. 27.
    Posch MG, Zang C, Mueller W, Lass U, von Deimling A, Elstner E (2004) Somatic mutations in peroxisome proliferator-activated receptor-gamma are rare events in human cancer cells. Med Sci Monit 10:BR250–BR254PubMedGoogle Scholar
  28. 28.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954PubMedCrossRefGoogle Scholar
  29. 29.
    Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, Van Meir EG (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9:469–479PubMedCrossRefGoogle Scholar
  30. 30.
    Shinoura N, Sakurai S, Shibasaki F, Asai A, Kirino T, Hamada H (2002) Co-transduction of Apaf-1 and caspase-9 highly enhances p53-mediated apoptosis in gliomas. Br J Cancer 86:587–595PubMedCrossRefGoogle Scholar
  31. 31.
    Kaluzova M, Pastorekova S, Pastorek J, Kaluz S (2000) p53 tumour suppressor modulates transcription of the TATA-less gene coding for the tumour-associated carbonic anhydrase MN/CA IX in MaTu cells. Biochim Biophys Acta 1491:20–26PubMedGoogle Scholar
  32. 32.
    Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15:1311–1333PubMedCrossRefGoogle Scholar
  33. 33.
    Kaur B, Tan C, Brat DJ, Post DE, Van Meir EG (2004) Genetic and hypoxic regulation of angiogenesis in gliomas. J Neuro-oncol 70:229–243CrossRefGoogle Scholar
  34. 34.
    Ivanov SV, Kuzmin I, Wei MH, Pack S, Geil L, Johnson BE, Stanbridge EJ, Lerman MI (1998) Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci USA 95:12596–12601PubMedCrossRefGoogle Scholar
  35. 35.
    Bishop JM (1987) The molecular genetics of cancer. Science 235:305–311PubMedCrossRefGoogle Scholar
  36. 36.
    Prendergast GC, Cole MD (1989) Posttranscriptional regulation of cellular gene expression by the c-myc oncogene. Mol Cell Biol 9:124–134PubMedGoogle Scholar
  37. 37.
    Koukourakis MI, Bentzen SM, Giatromanolaki A, Wilson GD, Daley FM, Saunders MI, Dische S, Sivridis E, Harris AL (2006) Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J Clin Oncol 24:727–735PubMedCrossRefGoogle Scholar
  38. 38.
    Bui MH, Seligson D, Han KR, Pantuck AJ, Dorey FJ, Huang Y, Horvath S, Leibovich BC, Chopra S, Liao SY, Stanbridge E, Lerman MI, Palotie A, Figlin RA, Belldegrun AS (2003) Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res 9:802–811PubMedGoogle Scholar
  39. 39.
    Parkkila S, Rajaniemi H, Parkkila AK, Kivelä J, Waheed A, Pastoreková S, Pastorek J, Sly WS (2000) Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proc Natl Acad Sci 5:2220–2224CrossRefGoogle Scholar
  40. 40.
    Chrastina A, Pastorekova S, Pastorek J (2003) Immunotargeting of human cervical carcinoma xenograft expressing CA IX tumor-associated antigen by 125I-labeled M75 monoclonal antibody. Neoplasma 50:13–21PubMedGoogle Scholar
  41. 41.
    Semenza GL, Roth PH, Fang H-M, Wang LW (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763PubMedGoogle Scholar
  42. 42.
    Holbrook JJ, Liljas A, Steindel SJ, Rossman MG (1975), Lactate dehydrogenase. In: Boyer PD (eds) The enzymes. Volume 11, 3rd ed. Academic Press, NY, pp 191–292Google Scholar
  43. 43.
    Harris RA, Bowker-Kinley MM, Hyang B, Wu P (2002) Regulation of the activity of the pyruvate dehydrogenase complex. Adv Enzyme Regul 42:249–259PubMedCrossRefGoogle Scholar
  44. 44.
    Schmaltz C, Hardenbergh PH, Wells A, Fisher DE (1998) Regulation of proliferation—survival decisions during tumor cell hypoxia. Mol Cell Biol 18:2845–2854PubMedGoogle Scholar
  45. 45.
    Vordermark D, Kraft P, Katzer A, Bolling T, Willner J, Flentje M (2005) Glucose requirement for hypoxic accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha). Cancer Lett 230:122–133PubMedCrossRefGoogle Scholar
  46. 46.
    Staab , Löffler J, Katzer A, Beyer M, Said HM, Polat B, Einsele H, Flentje M, Vordermark D, Modulation of glucose metabolism inhibits hypoxic accumulation of hypoxia-inducible factor-1α (HIF-1α) (submitted)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Harun M. Said
    • 1
  • Adrian Staab
    • 1
  • Carsten Hagemann
    • 2
  • Giles H. Vince
    • 2
  • Astrid Katzer
    • 1
  • Michael Flentje
    • 1
  • Dirk Vordermark
    • 1
  1. 1.Department of Radiation OncologyUniversity of WuerzburgWuerzburgGermany
  2. 2.Department of NeurosurgeryUniversity of Wuerzburg WuerzburgGermany

Personalised recommendations