Journal of Neuro-Oncology

, Volume 79, Issue 2, pp 135–142 | Cite as

Inhibition of matrix degrading enzymes and invasion in human glioblastoma (U87MG) Cells by isoflavones

Laboratory Investigation


Glioblastoma multiforme is a primary brain tumor associated with extensive invasion into surrounding brain tissue. Matrix metalloproteinases (MMPs) and urokinase plasminogen activation (uPA) system are shown to be involved in tumor invasion as they help in degradation of extracellular matrix (ECM) proteins and thus assist in the movement of cells. MMP-2 and 9 were shown to be upregulated in gliomas, suggesting their involvement in invasion. Genistein and biochanin A are isoflavones commonly known as phytoestrogens and have some anticancer properties. We hypothesize that these two isoflavones can induce a lowering of tumor invasion by decreasing the activity of matrix degrading enzymes. In this study we investigated the effects of genistein and biochanin A on invasive activity of U87MG cells using the Calbiochem in vitro invasion assay system. Our results suggest that genistein and biochanin A induced a decrease in invasive activity of U87MG cells in a dose-related manner. Genistein also induced a decrease in EGF-stimulated invasion thereby implicating an involvement of EGF-mediated signaling in invasion. Our results also show that treatment of U87MG cells with the two isoflavones induced decreases in the enzymatic activity of MMP-9 and the protein levels of MT1-MMP and uPAR.


glioblastoma invasion isoflavones MMPs uPAR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Our work was supported in part, by grants from Faculty Research Committee grant # 937, and University Research Committee grant # FY2002-09 at Idaho State University, and NIH/NCRR INBRE grant # P20RR16454.


  1. 1.
    Central Brain Tumor Registry of the Unites States. Statistical report: primary brain tumors in the Unites States, 1995–1999. CBTRUS; 2002–2003Google Scholar
  2. 2.
    Kufe DW, Pollock RE, Weichselbaum RR, Bast RC, Gansler TS, Holland JF, Frei E: Cancer Medicine 6. BC Decker, New York, 2003, p1195–1231Google Scholar
  3. 3.
    Jeffrey Bruce: Glioblastoma Multiforme. eMedicine February, 2005Google Scholar
  4. 4.
    Tremont-Lukats IW, Gilbert MR: Advances in molecular therapies in patients with brain tumors Cancer Control 10(2): 125–37, 2003PubMedGoogle Scholar
  5. 5.
    Bello L, Giussani C, Carrabba G, Pluderi M, Costa F, Bikfalvi A: Angiogenesis and invasion in gliomas Cancer Treat Res 117:263–284, 2004PubMedGoogle Scholar
  6. 6.
    Binder DK, Berger MS: Proteases and the biology of glioma invasion J Neurooncol 56(2):149–158, 2002CrossRefPubMedGoogle Scholar
  7. 7.
    Visse R, Nagase H: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry Circ Res 92(8):827–839, 2003CrossRefPubMedGoogle Scholar
  8. 8.
    Vihinen P, Kahari VM: Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets Int J Cancer 99(2):157–166, 2002CrossRefPubMedGoogle Scholar
  9. 9.
    Kachra Z, Beaulieu E, Delbecchi L, Mousseau N, Berthelet F, Moumdjian R, Del Maestro R, Beliveau R: Expression of matrix metalloproteinases and their inhibitors in human brain tumors Clin Exp Metastasis 17(7):555–566, 1999CrossRefPubMedGoogle Scholar
  10. 10.
    Deryugina EI, Bourdon MA, Luo GX, Reisfeld RA, Strongin A: Matrix metalloproteinase-2 activation modulates glioma cell migration J Cell Sci 110(19):2473–2482, 1997PubMedGoogle Scholar
  11. 11.
    Choe G, Park JK, Jouben-Steele L, Kremen TJ, Liau LM, Vinters HV, Cloughesy TF, Mischel PS: Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype Clin Cancer Res 8(9):2894–2901, 2002PubMedGoogle Scholar
  12. 12.
    Lampert K, Machein U, Machein MR, Conca W, Peter HH, Volk B: Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors Am J Pathol 153(2):429–437, 1998PubMedGoogle Scholar
  13. 13.
    Abe T, Mori T, Kohno K, Seiki M, Hayakawa T, Welgus HG, Hori S, Kuwano M: Expression of 72 kDa type IV collagenase and invasion activity of human glioma cells Clin Exp Metastasis 12(4):296–304, 1994CrossRefPubMedGoogle Scholar
  14. 14.
    Fillmore HL, VanMeter TE, Broaddus WC: Membrane-type matrix metalloproteinases (MT-MMPs): expression and function during glioma invasion J Neurooncol 53(2):187–202, 2001CrossRefPubMedGoogle Scholar
  15. 15.
    Hess AR, Seftor EA, Seftor RE, Hendrix MJ: Phosphoinositide 3-kinase regulates membrane Type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry Cancer Res 63(16):4757–4762, 2003PubMedGoogle Scholar
  16. 16.
    Ouyang YW, Peng ZL, Yao XY, Liu SL, He YD: The expression of matrix metalloproteinase-2 and -9 in cervical cancer and a study of their relationship Sichuan Da Xue Xue Bao Yi Xue Ban 35(3):330–333, 2004PubMedGoogle Scholar
  17. 17.
    Gurevich LE: Role of matrix metalloproteinases 2 and 9 in determination of invasive potential of pancreatic tumors. Bull Exp Biol Med 136(5):494–498, 2003CrossRefPubMedGoogle Scholar
  18. 18.
    Fan SQ, Wei QY, Li MR, Zhang LQ, Liang QC: Expression and clinical significance of MMP-2, MMP-9, TIMP-1, and TIMP-2 in breast carcinoma Ai Zheng 22(9):968–973, 2003PubMedGoogle Scholar
  19. 19.
    Kondapaka SB, Fridman R, Reddy KB: Epidermal Growth Factor and Amphiregulin up-regulate matrix metalloproteinase-9 (MMP-9) in human breast cancer cells Int J Cancer17(6): 722–726, 1997CrossRefGoogle Scholar
  20. 20.
    Ellerbroek SM, Hudson LG, Stack MS: Proteinase requirements of epidermal growth factor induced ovarian cancer cell invasion Int J Cancer78(3)331–337, 1998CrossRefPubMedGoogle Scholar
  21. 21.
    Ellerbroek SM, Halbleib JM, Benavidez M, Warmka JK, Wattenberg EV, Stack MS, Hudson LG: Phosphatidylinositol 3-kinase activity in epidermal growth factor-stimulated matrix metalloproteinase-9 production and cell surface association. Cancer Res (61): 1855–1861, 2001Google Scholar
  22. 22.
    Huang SM, Li J, Harari PM: Molecular inhibition of angiogenesis and metastatic potential in human squamous cell carcinomas after epidermal growth factor receptor blockade. Mol Cancer Ther 1(7): 507–514, 2002Google Scholar
  23. 23.
    Cox G, Jones JL, O’ Byrne KJ: Matrix metalloproteinase 9 and the epidermal growth factor signal pathway in operable non-small cell lung cancer Clin Cancer Res6(6):2349–2355, 2000PubMedGoogle Scholar
  24. 24.
    Liu Z, Klominek J: Inhibition of proliferation, migration, and matrix metalloprotease production in malignant mesothelioma cells by tyrosine kinase inhibitors Neoplasia6(6):705–712, 2004PubMedCrossRefGoogle Scholar
  25. 25.
    Andreasen PA, Kjoller L, Christensen L, Duffy MJ: The urokinase-type plasminogen activator system in cancer metastasis: a review Int J Cancer 72(1):1–22, 1997CrossRefPubMedGoogle Scholar
  26. 26.
    Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L: EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma Cancer Cell 1(5):445–457, 2002CrossRefPubMedGoogle Scholar
  27. 27.
    Aguirre Ghiso JA, Alonso DF, Farias EF, Gomez DE, de Kier Joffe EB: Deregulation of the signaling pathways controlling urokinase production. Its relationship with the invasive phenotype Eur J Biochem 263(2):295–304, 1999CrossRefPubMedGoogle Scholar
  28. 28.
    Mohanam S, Gladson CL, Rao CN, Rao JS: Biological significance of the expression of urokinase-type plasminogen activator receptors (uPARs) in brain tumors Front Biosci 15(4): D178–D187, 1999CrossRefGoogle Scholar
  29. 29.
    Mohanam S, Chintala SK, Go Y, Bhattacharya A, Venkaiah B, Boyd D, Gokaslan ZL, Sawaya R, Rao JS: In vitro inhibition of human glioblastoma cell line invasiveness by antisense uPA receptor Oncogene 14(11):1351–1359, 1997CrossRefPubMedGoogle Scholar
  30. 30.
    Lee HP, Gourley L, Duffy SW, Esteve J, Lee J, Day NE: Dietary effects on breast-cancer risk in Singapore Lancet 337(8751):1197–1200, 1991CrossRefPubMedGoogle Scholar
  31. 31.
    Persky V, Van Horn L: Epidemiology of soy and cancer: perspectives and directions J Nutr 125(3):709S-712S, 1995PubMedGoogle Scholar
  32. 32.
    Barnes S, Peterson TG: Biochemical targets of the isoflavone genistein in tumor cell lines Proc Soc Exp Biol Med 208(1):103–108, 1995PubMedGoogle Scholar
  33. 33.
    Fotsis T, Pepper M, Adlercreutz H, Fleischmann G, Hase T, Montesano R, Schweigerer L: Genistein, a dietary-derived inhibitor of in vitro angiogenesis Proc Natl Acad Sci USA90(7):2690–2694, 1993PubMedCrossRefGoogle Scholar
  34. 34.
    Messina MJ, Persky V, Setchell KD, Barnes S: Soy intake and cancer risk: a review of the in vitro and in vivo data Nutr Cancer 21(2):113–131, 1994PubMedCrossRefGoogle Scholar
  35. 35.
    Chen WF, Huang MH, Tzang CH, Yang M, Wong MS: Inhibitory actions of genistein in human breast cancer (MCF-7) cells Biochim Biophys Acta 1638(2):187–196, 2003PubMedGoogle Scholar
  36. 36.
    Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y: Genistein, a specific inhibitor of tyrosine-specific protein kinases J Biol Chem 262(12):5592–5595, 1987PubMedGoogle Scholar
  37. 37.
    Penar PL, Khoshyomn S, Bhushan A, Tritton TR: Inhibition of epidermal growth factor receptor-associated tyrosine kinase blocks glioblastoma invasion of the brain Neurosurgery 40(1):141–151, 1997CrossRefPubMedGoogle Scholar
  38. 38.
    Penar PL, Khoshyomn S, Bhushan A, Tritton TR: Inhibition of glioma invasion of fetal brain aggregates In Vivo 12(1):75–84, 1998PubMedGoogle Scholar
  39. 39.
    Lee YS, Seo JS, Chung HT, Jang JJ: Inhibitory effects of biochanin A on mouse lung tumor induced by benzo(a)pyreneJ Korean Med Sci 6(4):325–328, 1991PubMedGoogle Scholar
  40. 40.
    Peterson G, Barnes S: Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation Prostate 22(4):335–345, 1993PubMedCrossRefGoogle Scholar
  41. 41.
    Hempstock J, Kavanagh JP, George NJ: Growth inhibition of prostate cell lines in vitro by phyto-oestrogens Br J Urol 82(4):560–563, 1998PubMedGoogle Scholar
  42. 42.
    Rice L, Samedi VG, Medrano TA, Sweeney CA, Baker HV, Stenstrom A, Furman J, Shiverick KT: Mechanisms of the growth inhibitory effects of the isoflavonoid biochanin A on LNCaP cells and xenografts Prostate 52(3):201–212, 2002CrossRefPubMedGoogle Scholar
  43. 43.
    Rao NK, Shi GP, Chapman HA: Urokinase receptor is a multifunctional protein: influence of receptor occupancy on macrophage gene expression J Clin Invest 96(1):465–474, 1995PubMedCrossRefGoogle Scholar
  44. 44.
    Laerum OD, Bjerkvig R, Steinsvag SK, de Ridder L: Invasiveness of primary brain tumors Cancer Metastasis Rev 3(3):223–236, 1984CrossRefPubMedGoogle Scholar
  45. 45.
    Yamamoto S, Sobue T, Kobayashi M, Sasaki S, Tsugane S: Japan Public Health Center-Based Prospective Study on Cancer Cardiovascular Diseases Group. Soy, isoflavones, and breast cancer risk in Japan J Natl Cancer Inst 95(12):906–913, 2003PubMedCrossRefGoogle Scholar
  46. 46.
    Wu AH, Ziegler RG, Nomura AM, West DW, Kolonel LN, Horn-Ross PL, Hoover RN, Pike MC: Soy intake and risk of breast cancer in Asians and Asian Americans Am J Clin Nutr. 68(6):1437S-1443S, 1998PubMedGoogle Scholar
  47. 47.
    Wu AH, Ziegler RG, Horn-Ross PL, Nomura AM, West DW, Kolonel LN, Rosenthal JF, Hoover RN, Pike MC: Tofu and risk of breast cancer in Asian-Americans Cancer Epidemiol Biomarkers Prev 5(11):901–906, 1996PubMedGoogle Scholar
  48. 48.
    Zheng W, Dai Q, Custer LJ, Shu XO, Wen WQ, Jin F, Franke AA: Urinary excretion of isoflavonoids and the risk of breast cancer Cancer Epidemiol Biomarkers Prev 8(1):35–40, 1999PubMedGoogle Scholar
  49. 49.
    Mikkelsen T, Bjerkvig R, Laerum OD, Rosenblum ML: Brain Tumor Invasion: Biological, Clinical, and Therapeutic Considerations. Wiley-Liss, 1998Google Scholar
  50. 50.
    Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW, Martin GR: Basement membrane complexes with biological activity Biochemistry 25(2):312–318, 1986CrossRefPubMedGoogle Scholar
  51. 51.
    Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, McEwan RN: A rapid in vitro assay for quantitating the invasive potential of tumor cells Cancer Res 47(12):3239–3245, 1987PubMedGoogle Scholar
  52. 52.
    Bjerkvig R, Tonnesen A, Laerum OD, Backlund EO: Multicellular tumor spheroids from human gliomas maintained in organ culture J Neurosurg 72(3):463–475, 1990PubMedCrossRefGoogle Scholar
  53. 53.
    Lund-Johansen M, Bjerkvig R, Humphrey PA, Bigner SH, Bigner DD, Laerum OD: Effect of epidermal growth factor on glioma cell growth, migration, and invasion in vitro Cancer Res 50(18):6039–6044, 1990PubMedGoogle Scholar
  54. 54.
    Lund-Johansen M, Forsberg K, Bjerkvig R, Laerum OD: Effects of growth factors on a human glioma cell line during invasion into rat brain aggregates in culture Acta Neuropathol 84(2):190–197, 1992CrossRefPubMedGoogle Scholar
  55. 55.
    Yamamoto M, Ueno Y, Hayashi S, Fukushima T: The role of proteolysis in tumor invasiveness in glioblastoma and metastatic brain tumors Anticancer Res 22(6C):4265–4268, 2002PubMedGoogle Scholar
  56. 56.
    Nuttall RK, Pennington CJ, Taplin J, Wheal A, Yong VW, Forsyth PA, Edwards DR: Elevated membrane-type matrix metalloproteinases in gliomas revealed by profiling proteases and inhibitors in human cancer cells Mol Cancer Res 1(5):333–345, 2003PubMedGoogle Scholar
  57. 57.
    Guo P, Imanishi Y, Cackowski FC, Jarzynka MJ, Tao HQ, Nishikawa R, Hirose T, Hu B, Cheng SY: Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human gliomaAm J Pathol 166(3):877–890, 2005PubMedGoogle Scholar
  58. 58.
    Lakka SS, Gondi CS, Yanamandra N, Dinh DH, Olivero WC, Gujrati M, Rao JS: Synergistic down-regulation of urokinase plasminogen activator receptor and matrix metalloproteinase-9 in SNB19 glioblastoma cells efficiently inhibits glioma cell invasion, angiogenesis, and tumor growth Cancer Res 63(10):2454–2461, 2003PubMedGoogle Scholar
  59. 59.
    Tsatas D, Kaye AH: The role of the plasminogen activation cascade in glioma cell invasion: a review J Clin Neurosci 10(2):139–145, 2003CrossRefPubMedGoogle Scholar
  60. 60.
    Bhattacharya A, Lakka SS, Mohanam S, Boyd D, Rao JS: Regulation of the urokinase-type plasminogen activator receptor gene in different grades of human glioma cell lines Clin Cancer Res 7(2):267–276, 2001PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, College of Pharmacy and Biomedical Research InstituteIdaho State UniversityPocatelloUSA
  2. 2.College of PharmacyIdaho State UniversityPocatelloUSA

Personalised recommendations