Ecosystem restoration after bauxite mining: favorable indicators for Technosols construction and soil management using liming and subsoiling

Abstract

Although its economic importance, bauxite mining causes the loss of natural ecosystems. In this sense, the Technosols building from materials made or modified by man, such as mine tailings, is necessary for recovering degraded areas. Additionally, the Technosols management, such as subsoiling and liming, increases chances of plants establishment and growth. In this study, a degraded area by bauxite mining with constructed Technosol in the Eastern Amazon, Brazil, was tested under three different soil management treatments: Technosol-1 (Tech-1), Liming only; Technosol-2 (Tech-2), Subsoiling + 200 g of NPK in the pit; Technosol-3 (Tech-3), Scarification + liming + all Tech-2 procedures. In every treatment and in a reference forest (R-forest), 8 years after the initial seedling planting, three types of indicators were assessed: structural (horizontal vegetation structure, density of natural regeneration, and soil cover), compositional (species diversity, ecological groups, and dispersal syndromes), and functional (chemical properties of Technosols and dry matter and nutrients from the litter stock). The most representative species in all treatments were Croton matourensis and Vismia guianensis, both coming from the natural regeneration and common in early successional stages. Coverage rates in all treatments showed less than 5% of exposed Technosol and the diversity, ecological group, and dispersal syndrome indexes followed a successful trajectory along 8 years. Tech-2 and Tech-3 presented the best chemical attributes and nutrients in the litter stock, but they would probably last several decades to reach the R-forest attributes. Thus, subsoiling alone or with liming provided the best chemical results for soil, litter, and vegetation performance, being recommended to speed up restoration of degrades areas by bauxite mining in the Amazon.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. ABAL (2019) Associação Brasileira do Alumínio. Estatísticas Nacionais—Bauxita, São Paulo

    Google Scholar 

  2. Aerts R, Honnay O (2011) Forest restoration, biodiversity and ecosystem functioning. BMC Ecol. https://doi.org/10.1186/1472-6785-11-29

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ahirwal J, Maiti SK (2018) Development of Technosol properties and recovery of carbon stock after 16 years of revegetation on coal mine degraded lands, India. CATENA 166:114–123. https://doi.org/10.1016/j.catena.2018.03.026

    CAS  Article  Google Scholar 

  4. Ahirwal J, Maiti SK, Reddy MS (2017) Development of carbon, nitrogen and phosphate stocks of reclaimed coal mine soil within 8years after forestation with Prosopis juliflora (Sw.) Dc. CATENA 156:42–50. https://doi.org/10.1016/j.catena.2017.03.019

    CAS  Article  Google Scholar 

  5. Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  6. Amaral DD, Viera ICG, Salomão RP et al (2009) Checklist da flora arbórea de remanescentes florestais da região metropolitana de Belém, Pará, Brasil. Bol do Mus Para Emilio Goeldi Ciências Nat 4:231–289

    Article  Google Scholar 

  7. Amaral DD, Jardim MAG, Costa Neto SV, Bastos MNC (2015) Síndromes de dispersão de propágulos e a influência da Floresta Amazônica na composição de espécies lenhosas de uma restinga no litoral norte brasileiro. Biota Amaz 5:28–37. https://doi.org/10.18561/2179-5746/biotaamazonia.v5n3p28-37

    Article  Google Scholar 

  8. Balestrin D, Martins SV, Schoorl JM et al (2019) Phytosociological study to define restoration measures in a mined area in Minas Gerais, Brazil. Ecol Eng 135:8–16. https://doi.org/10.1016/j.ecoleng.2019.04.023

    Article  Google Scholar 

  9. Bandyopadhyay S, Maiti SK (2019) Evaluation of ecological restoration success in mining-degraded lands. Environ Qual Manag 28:1–12. https://doi.org/10.1002/tqem.21641

    Article  Google Scholar 

  10. Bertacchi MIF, Amazonas NT, Brancalion PHS et al (2016) Establishment of tree seedlings in the understory of restoration plantations: natural regeneration and enrichment plantings. Restor Ecol 24:100–108. https://doi.org/10.1111/rec.12290

    Article  Google Scholar 

  11. Bizuti DTG, de Soares TM, Duarte MM et al (2020) Recovery of soil phosphorus on former bauxite mines through tropical forest restoration. Restor Ecol 28:776–780. https://doi.org/10.1111/1462-2920.12735

    CAS  Article  Google Scholar 

  12. Borges SR, Santos RS, Oliveira DMS et al (2019) Practices for rehabilitating bauxite-mined areas and an integrative approach to monitor soil quality. Land Degrad Dev 30:866–877. https://doi.org/10.1002/ldr.3273

    Article  Google Scholar 

  13. Brancalion PHS, Holl KD (2016) Functional composition trajectory: a resolution to the debate between Suganuma, Durigan, and Reid. Restor Ecol 24:1–3. https://doi.org/10.1111/rec.12312

    Article  Google Scholar 

  14. Buol SW, Sanchez PA, Cate RB, Jr. Granger M. (1975) Soil fertility capability classification. In: Bornemisza E, Alvarado A (eds) Soil management in tropical America. Raleigh, pp 126–140

  15. Byng JW, Chase MW, Christenhusz MJM, et al (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 1–20

  16. Caldeira MVW, Godinho TDO, Moreira FL et al (2019) Litter as an ecological indicator of forest restoration processes in a dense ombrophylous lowland forest. Florest Ambient 26:1–11. https://doi.org/10.1590/2179-8087.041118

    Article  Google Scholar 

  17. Cambi M, Certini G, Neri F, Marchi E (2015) The impact of heavy traffic on forest soils: a review. For Ecol Manag 338:124–138. https://doi.org/10.1016/j.foreco.2014.11.022

    Article  Google Scholar 

  18. Carlucci MB, Brancalion PHS, Rodrigues RR et al (2020) Functional traits and ecosystem services in ecological restoration. Restor Ecol. https://doi.org/10.1111/rec.13279

    Article  Google Scholar 

  19. Cassol HLG, Shimabukuro YE, de Carreiras JMB, Moraes EC (2018) Improved tree height estimation of secondary forests in the Brazilian Amazon. Acta Amaz 48:179–190. https://doi.org/10.1590/1809-4392201700844

    Article  Google Scholar 

  20. Chazdon R (2012) Regeneração de florestas tropicais. Bol Mus Para Emílio Goeldi Cienc Nat 7:195–218

    Google Scholar 

  21. Chazdon RL, Guariguata MR (2016) Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48:716–730. https://doi.org/10.1111/btp.12381

    Article  Google Scholar 

  22. CNCFLORA (2020) Centro Nacional de Conservação da Flora. Hymenaea parvifolia Huber—extinction risk assessment information. http://cncflora.jbrj.gov.br/portal/pt-br/profile/Hymenaeaparvifolia. Accessed 22 Nov 2020

  23. Crouzeilles R, Curran M, Ferreira MS et al (2016) A global meta-analysis on the ecological drivers of forest restoration success. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms11666

    CAS  Article  Google Scholar 

  24. Crouzeilles R, Ferreira MS, Chazdon RL et al (2017) Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci Adv 3:1–8. https://doi.org/10.1126/sciadv.1701345

    Article  Google Scholar 

  25. Cruz DC, Benayas JMR, Ferreira GC, Ribeiro SS (2020) Tree communities in three-year-old post-mining sites under different forest restoration techniques in the Brazilian Amazon. Forests 11:1–16. https://doi.org/10.3390/f11050527

    Article  Google Scholar 

  26. Gupta SD, Kirby W, Pinno BD (2019) Effects of stockpiling and organic matter addition on nutrient bioavailability in reclamation soils. Soil Sci Soc Am J. https://doi.org/10.2136/sssaj2018.07.0273

    Article  Google Scholar 

  27. Daws MI, Standish RJ, Koch JM et al (2015) Forest ecology and management phosphorus fertilisation and large legume species affect jarrah forest restoration after bauxite mining. For Ecol Manag 354:10–17. https://doi.org/10.1016/j.foreco.2015.07.003

    Article  Google Scholar 

  28. Daws MI, Grigg AH, Tibbett M, Standish RJ (2019) Enduring effects of large legumes and phosphorus fertiliser on jarrah forest restoration 15 years after bauxite mining. For Ecol Manag 438:204–214. https://doi.org/10.1016/j.foreco.2019.02.029

    Article  Google Scholar 

  29. Desie E, Vancampenhout K, Nyssen B et al (2020a) Litter quality and the law of the most limiting: Opportunities for restoring nutrient cycles in acidified forest soils. Sci Total Environ 699:134383. https://doi.org/10.1016/j.scitotenv.2019.134383

    CAS  Article  PubMed  Google Scholar 

  30. Desie E, Vancampenhout K, van den Berg L et al (2020b) Litter share and clay content determine soil restoration effects of rich litter tree species in forests on acidified sandy soils. For Ecol Manag 474:118377. https://doi.org/10.1016/j.foreco.2020.118377

    Article  Google Scholar 

  31. Domínguez-Haydar Y, Velásquez E, Carmona J et al (2019) Evaluation of reclamation success in an open-pit coal mine using integrated soil physical, chemical and biological quality indicators. Ecol Indic 103:182–193. https://doi.org/10.1016/j.ecolind.2019.04.015

    CAS  Article  Google Scholar 

  32. Dudley N, Bhagwat SA, Harris J et al (2018) Measuring progress in status of land under forest landscape restoration using abiotic and biotic indicators. Restor Ecol 26:5–12. https://doi.org/10.1111/rec.12632

    Article  Google Scholar 

  33. Duncan C, Good MK, Sluiter I et al (2020) Soil reconstruction after mining fails to restore soil function in an Australian arid woodland. Restor Ecol 28:A35–A43. https://doi.org/10.1111/rec.13166

    Article  Google Scholar 

  34. Durigan G, Suganuma MS (2015) Why species composition is not a good indicator to assess restoration success? Counter-response to Reid (2015). Restor Ecol 23:521–523. https://doi.org/10.1111/rec.12272

    Article  Google Scholar 

  35. Evju M, Hagen D, Kyrkjeeide MO, Köhler B (2020) Learning from scientific literature: Can indicators for measuring success be standardized in “on the ground” restoration? Restor Ecol 28:519–531. https://doi.org/10.1111/rec.13149

    Article  Google Scholar 

  36. Feng Y, Wang J, Bai Z, Reading L (2019) Effects of surface coal mining and land reclamation on soil properties: a review. Earth-Sci Rev 191:12–25. https://doi.org/10.1016/j.earscirev.2019.02.015

    CAS  Article  Google Scholar 

  37. Fengler FH, Bressane A, Carvalho MM et al (2017) Forest restoration assessment in Brazilian Amazonia: a new clustering-based methodology considering the reference ecosystem. Ecol Eng 108:93–99. https://doi.org/10.1016/j.ecoleng.2017.08.008

    Article  Google Scholar 

  38. Festin ES, Tigabu M, Chileshe MN et al (2019) Progresses in restoration of post-mining landscape in Africa. J For Res 30:381–396. https://doi.org/10.1007/s11676-018-0621-x

    Article  Google Scholar 

  39. Flora do Brasil (2020) em construção Jardim Botânico do Rio de Janeiro

  40. Forján R, Rodríguez-Vila A, Covelo EF (2019) Increasing the nutrient content in a mine soil through the application of Technosol and biochar and grown with Brassica juncea L. Waste Biomass Valoriz 10:103–119. https://doi.org/10.1007/s12649-017-0027-6

    CAS  Article  Google Scholar 

  41. Gastauer M, Silva JR, Caldeira CF Jr et al (2018) Mine land rehabilitation: modern ecological approaches for more sustainable mining. J Clean Prod 172:1409–1422. https://doi.org/10.1016/j.jclepro.2017.10.223

    Article  Google Scholar 

  42. Gastauer M, Souza Filho PWM, Ramos SJ et al (2019) Mine land rehabilitation in Brazil: goals and techniques in the context of legal requirements. Ambio 48:74–88. https://doi.org/10.1007/s13280-018-1053-8

    Article  PubMed  Google Scholar 

  43. Gastauer M, Caldeira CF, Ramos SJ et al (2020) Active rehabilitation of Amazonian sand mines converges soils, plant communities and environmental status to their predisturbance levels. Land Degrad Dev 31:607–618. https://doi.org/10.1002/ldr.3475

    Article  Google Scholar 

  44. Gatica-Saavedra P, Echeverría C, Nelson CR (2017) Ecological indicators for assessing ecological success of forest restoration: a world review. Restor Ecol 25:850–857. https://doi.org/10.1111/rec.12586

    Article  Google Scholar 

  45. Grau O, Peñuelas J, Ferry B et al (2017) Nutrient-cycling mechanisms other than the direct absorption from soil may control forest structure and dynamics in poor Amazonian soils. Sci Rep 7:1–11. https://doi.org/10.1038/srep45017

    CAS  Article  Google Scholar 

  46. Guedes RS, Ramos SJ, Gastauer M et al (2020) Phosphorus lability increases with the rehabilitation advance of iron mine land in the eastern Amazon. Environ Monit Assess. https://doi.org/10.1007/s10661-020-08365-4

    Article  PubMed  Google Scholar 

  47. Guerra A, Reis LK, Borges FLG et al (2020) Ecological restoration in Brazilian biomes: identifying advances and gaps. For Ecol Manag. https://doi.org/10.1016/j.foreco.2019.117802

    Article  Google Scholar 

  48. Horodecki P, Jagodziński AM (2017) Tree species effects on litter decomposition in pure stands on afforested post-mining sites. For Ecol Manag 406:1–11. https://doi.org/10.1016/j.foreco.2017.09.059

    Article  Google Scholar 

  49. Horodecki P, Nowiński M, Jagodziński AM (2019) Advantages of mixed tree stands in restoration of upper soil layers on postmining sites: a five-year leaf litter decomposition experiment. L Degrad Dev 30:3–13. https://doi.org/10.1002/ldr.3194

    Article  Google Scholar 

  50. IBGE. Intituto Brasileiro de Geografia e Estatística (2012) Manual técnico da vegetação brasileira

  51. IUSS Working Group WRB (2015) World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps, 106th edn. Rome

  52. Kauano ÉE, Cardoso FCG, Torezan JMD, Marques MCM (2013) Micro- and meso-scale factors affect the restoration of Atlantic Forest. Nat Conserv 11:145–151. https://doi.org/10.4322/natcon.2013.023

    Article  Google Scholar 

  53. Kneller T, Harris RJ, Bateman A, Muñoz-rojas M (2018) Native-plant amendments and topsoil addition enhance soil function in post-mining arid grasslands. Sci Total Environ 621:744–752. https://doi.org/10.1016/j.scitotenv.2017.11.219

    CAS  Article  PubMed  Google Scholar 

  54. Kollmann J, Meyer ST, Bateman R et al (2016) Integrating ecosystem functions into restoration ecology—recent advances and future directions. Restor Ecol 24:722–730. https://doi.org/10.1111/rec.12422

    Article  Google Scholar 

  55. Kotschoubey B, Calaf JMC, Lobato a CC, et al (2005) Caracterização e gênese dos depósitos de bauxita da Província Bauxitífera de Paragominas, noroeste da Bacia do Grajú, nordeste do Pará/oeste do Maranhão. In: Marini OJ, Queiroz ET de, Ramos BW (eds) Caracterização de depósitos minerais em distritos mineiros da Amazônia, 1st edn. Brasília, pp 687–782

  56. Laughlin DC, Strahan RT, Moore MM et al (2017) The hierarchy of predictability in ecological restoration: are vegetation structure and functional diversity more predictable than community composition? J Appl Ecol 54:1058–1069. https://doi.org/10.1111/1365-2664.12935

    Article  Google Scholar 

  57. Liu X, Liu S (2020) Introduction to the special issue: Biodiversity mechanism in natural succession and ecological restoration. Ecol Eng 143:105614. https://doi.org/10.1016/j.ecoleng.2019.105614

    Article  Google Scholar 

  58. Londe V, Sousa HC, Kozovits AR (2016) Litterfall as an indicator of productivity and recovery of ecological functions in a rehabilitated riparian forest at Das Velhas River, southeast Brazil. Trop Ecol 57:355–360

    Google Scholar 

  59. Lorenzi H (2008) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Plantarum, Nova Odessa

    Google Scholar 

  60. Lorenzi H (2009a) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, Nova Odessa

  61. Lorenzi H (2009b) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, 2nd edn. Nova Odessa

  62. Macdonald SE, Landhäusser SM, Skousen J et al (2015) Forest restoration following surface mining disturbance: challenges and solutions. New For 46:703–732. https://doi.org/10.1007/s11056-015-9506-4

    Article  Google Scholar 

  63. Machado MR, Sampaio PTB, Ferraz J et al (2016) Nutrient retranslocation in forest species in the Brazilian Amazon. Acta Sci 38:93–101. https://doi.org/10.4025/actasciagron.v38i1.26805

    Article  Google Scholar 

  64. Malavolta E, Vitti GC, Oliveira SA (1997) Avaliação do estado nutricional das plantas. Piracicaba

  65. Martins WBR, Ferreira GC, Souza FP et al (2018) Deposição de serapilheira e nutrientes em áreas de mineração submetidas a métodos de restauração florestal em Paragominas, Pará. Floresta 48:37–48. https://doi.org/10.5380/rf.v48

    Article  Google Scholar 

  66. Martins WBR, Vale RL, Ferreira GC et al (2018) Litterfall, litter stock and water holding capacity in post-mining forest restoration ecosystems, Eastern Amazon. Rev Bras Ciencias Agrar 13:1–9. https://doi.org/10.5039/agraria.v13i3a5546

    Article  Google Scholar 

  67. Martins WBR, Lima MDR, Barros UO Jr et al (2020) Ecological methods and indicators for recovering and monitoring ecosystems after mining: a global literature review. Ecol Eng 145:105707. https://doi.org/10.1016/j.ecoleng.2019.105707

    Article  Google Scholar 

  68. Martins WBR, dos Barros WS, Dionísio LFS et al (2020) Survival, growth and regeneration of forest species in mining areas in the Eastern Amazonia. Sci Plena 16:1–13. https://doi.org/10.14808/sci.plena.2020.060204

    Article  Google Scholar 

  69. Meira MS Jr, Pereira IM, Mendonça EL et al (2015) Potential species for recovery areas Semideciduos Forest in iron exploration in the Serra Espinhaço. Biosci J 31:283–295

    Article  Google Scholar 

  70. Meyer ST, Koch C, Weisser WW (2015) Towards a standardized rapid ecosystem function assessment (REFA). Trends Ecol Evol 30:390–397. https://doi.org/10.1016/j.tree.2015.04.006

    Article  PubMed  Google Scholar 

  71. Miranda Neto A, Martins SV, Silva KA et al (2015) Litter production and leaf litter decomposition in mined area in restoration process in southeast Brazil. Aust J Basic Appl Sci 9:321–327

    Google Scholar 

  72. Monsels DA, Van Bergen MJ (2019) Bauxite formation on tertiary sediments in the coastal plain of Suriname. J South Am Earth Sci 89:275–298. https://doi.org/10.1016/j.jsames.2018.10.010

    CAS  Article  Google Scholar 

  73. Nsiah PK, Schaaf W (2019) The potentials of biological geotextiles in erosion and sediment control during gold mine reclamation in Ghana. J Soils Sediments 19:1995–2006. https://doi.org/10.1007/s11368-018-2217-7

    CAS  Article  Google Scholar 

  74. Onésimo CMG, Dias DD, Beirão M et al (2020) Ecological succession in areas degraded by bauxite mining indicates successful use of topsoil. Restor Ecol. https://doi.org/10.1111/rec.13303

    Article  Google Scholar 

  75. Pereira LCSM, Oliveira CCC, Torezan JMD (2013) Woody species regeneration in Atlantic Forest restoration sites depends on surrounding landscape. Nat Conserv 11:138–144. https://doi.org/10.4322/natcon.2013.022

    Article  Google Scholar 

  76. Prach K, Durigan G, Fennessy S et al (2019) A primer on choosing goals and indicators to evaluate ecological restoration success. Restor Ecol 27:917–923. https://doi.org/10.1111/rec.13011

    Article  Google Scholar 

  77. Quintela-Sabarís C, L’Huillier L, Mouchon LC et al (2018) Chemico-mineralogical changes of ultramafic topsoil during stockpiling: implications for post-mining restoration. Ecol Res 33:767–775. https://doi.org/10.1007/s11284-018-1609-x

    CAS  Article  Google Scholar 

  78. R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  79. Rezende GM, Vieira DLM (2019) Forest restoration in southern Amazonia: soil preparation triggers natural regeneration. For Ecol Manag 433:93–104. https://doi.org/10.1016/j.foreco.2018.10.049

    Article  Google Scholar 

  80. Ribeiro RA, Giannini TC, Gastauer M, Awade M (2018) Topsoil application during the rehabilitation of a manganese tailing dam increases plant taxonomic, phylogenetic and functional diversity. J Environ Manag 227:386–394. https://doi.org/10.1016/j.jenvman.2018.08.060

    CAS  Article  Google Scholar 

  81. Rocha-Nicoleite E, Campos ML, Colombo GT et al (2018) Forest restoration after severe degradation by coal mining: lessons from the first years of monitoring. Rev Bras Bot 41:653–664. https://doi.org/10.1007/s40415-018-0486-4

    Article  Google Scholar 

  82. Rodrigues TE, Silva RC, Silva JML et al (2003) Caracterização e classificação dos solos do município de Paragominas, estado do Pará. Belém

  83. Ruiz F, Cherubin MR, Ferreira TO (2020) Soil quality assessment of constructed Technosols: towards the validation of a promising strategy for land reclamation, waste management and the recovery of soil functions. J Environ Manage. https://doi.org/10.1016/j.jenvman.2020.111344

    Article  PubMed  Google Scholar 

  84. Ruiz-Jaén MC, Aide TM (2005) Vegetation structure, species diversity, and ecosystem processes as measures of restoration success. For Ecol Manag 218:159–173. https://doi.org/10.1016/j.foreco.2005.07.008

    Article  Google Scholar 

  85. Salomão RP, Brienza S, Nélson J, Rosa A (2014) Dinâmica de reflorestamento em áreas de restauração após mineração em unidade de conservação na Amazônia. Rev Árvore 38:1–24. https://doi.org/10.1590/S0100-67622014000100001

    Article  Google Scholar 

  86. SER (2004) Science & policy working group. The SER international primer on ecological restoration

  87. Silva WB, Périco E, Dalzochio MS et al (2018) Are litterfall and litter decomposition processes indicators of forest regeneration in the neotropics? Insights from a case study in the Brazilian Amazon. For Ecol Manag 429:189–197. https://doi.org/10.1016/j.foreco.2018.07.020

    Article  Google Scholar 

  88. Souza AL, Soares CPB (2013) Florestas nativas: estrutura, dinâmica e ambiência. Viçosa

  89. Sousa SS, Freitas DAF, Latini AO et al (2020) Iron ore mining areas and their reclamation in Minas Gerais State, Brazil: impacts on soil physical properties. SN Appl Sci. https://doi.org/10.1007/s42452-020-03457-9

    Article  Google Scholar 

  90. Souza ES, Fernandes AR, Souza Braz AM et al (2018) Physical, chemical, and mineralogical attributes of a representative group of soils from the eastern Amazon region in Brazil. Soil 4:195–212. https://doi.org/10.5194/soil-4-195-2018

    CAS  Article  Google Scholar 

  91. Stanturf JA, Palik BJ, Dumroese RK (2014) Contemporary forest restoration: a review emphasizing function. For Ecol Manag 331:292–323. https://doi.org/10.1016/j.foreco.2014.07.029

    Article  Google Scholar 

  92. Suganuma MS, Durigan G (2015) Indicators of restoration success in riparian tropical forests using multiple reference ecosystems. Restor Ecol 23:238–251. https://doi.org/10.1111/rec.12168

    Article  Google Scholar 

  93. Tapia-Coral SC, Luizão F, Pashanasi B et al (2014) Influencia da massa e nutrientes da liteira sobre a composição dos macro-invertebrados em plantíos florestais na Amazônia peruana. Folia Amaz 23:171–186

    Article  Google Scholar 

  94. Teixeira-Santos J, Ribeiro ACC, Wiig Ø et al (2020) Environmental factors influencing the abundance of four species of threatened mammals in degraded habitats in the eastern Brazilian Amazon. PLoS ONE 15:1–16. https://doi.org/10.1371/journal.pone.0229459

    CAS  Article  Google Scholar 

  95. Van der Pijl L (1982) Principles of dispersal in higher plats. Springer, Berlin

  96. Vivanco L, Austin AT (2019) The importance of macro- and micro-nutrients over climate for leaf litter decomposition and nutrient release in Patagonian temperate forests. For Ecol Manag 441:144–154. https://doi.org/10.1016/j.foreco.2019.03.019

    Article  Google Scholar 

  97. Walkley A, Black IA (1934) An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    CAS  Article  Google Scholar 

  98. Wortley L, Hero JM, Howes M (2013) Evaluating ecological restoration success: a review of the literature. Restor Ecol 21:537–543. https://doi.org/10.1111/rec.12028

    Article  Google Scholar 

  99. Xiao R, Zhang H, Wang Z et al (2019) Foliar litters: Sources of contaminants in phytoremediation sites by returning potentially toxic metals (PTMs) back to soils. Chemosphere 222:9–14. https://doi.org/10.1016/j.chemosphere.2019.01.090

    CAS  Article  PubMed  Google Scholar 

  100. Xiaogai G, Lixiong Z, Wenfa X et al (2013) Effect of litter substrate quality and soil nutrients on forest litter decomposition: a review. Acta Ecol Sin 33:102–108. https://doi.org/10.1016/j.chnaes.2013.01.006

    Article  Google Scholar 

  101. Zhang H, Yuan W, Dong W, Liu S (2014) Seasonal patterns of litterfall in forest ecosystem worldwide. Ecol Complex 20:240–247. https://doi.org/10.1016/j.ecocom.2014.01.003

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Walmer Bruno Rocha Martins.

Ethics declarations

Conflict of interest

The authors declare that they do not known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martins, W.B.R., Schwartz, G., Ribeiro, S.S. et al. Ecosystem restoration after bauxite mining: favorable indicators for Technosols construction and soil management using liming and subsoiling. New Forests (2021). https://doi.org/10.1007/s11056-021-09834-5

Download citation

Keyword

  • Degraded ecosystems
  • Eastern Amazon
  • Indicators evaluation
  • Restoration trajectory