Loss of viability and vigour in the course of short-term storage of Pityrocarpa moniliformis seeds cannot be attributed to reserve degradation

Abstract

The quality of forest seeds may be maintained in the course of storage for their use in the restoration of degraded areas and the conservation of genetic resources. In this sense, physiological and biochemical markers were evaluated during the short-term storage of Pityrocarpa moniliformis seeds, a pioneer species native to the Caatinga. Seeds harvested from 25 mother trees were stored in a growth chamber (27 ± 4 °C) or in a refrigerator (6 ± 3 °C) for 360 days. Viability, vigour, reserve contents, metabolite contents, and hydrolase activities were assessed at the beginning of the experiment and every 60 days. Over time, a decrease in germination percentage, germination speed index, and seedling growth accompanied by an increase in membrane damage was verified in the seeds kept in a growth chamber. These alterations were not associated with the degradation of starch and storage proteins, although there was a decrease in the content of non-reducing sugars in the seeds kept in the growth chamber. Therefore, the loss of viability and vigour in P. moniliformis seeds stored for 360 days in a growth chamber cannot be attributed to the hydrolysis of major reserves, but it may be related to the accumulation of reducing sugars.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

AGEs:

Advanced glycation end-products

DW:

Dry weight

FW:

Fresh weight

GSI:

Germination speed index

NRS:

Non-reducing sugars

RS:

Reducing sugars

RH:

Relative humidity

ROS:

Reactive oxygen species

TFAA:

Total free amino acids

TSS:

Total soluble sugars

References

  1. Abbade LC, Takaki M (2014) Biochemical and physiological changes of Tabebuia roseoalba (Ridl.) Sandwith (Bignoniaceae) seeds under storage. J Seed Sci 36:100–107

    Article  Google Scholar 

  2. Alves-de-Oliveira DFA, Melo SMB, Avelino AP, Macêdo CEC, Pacheco MV, Voigt EL (2017) The deterioration of Moringa oleifera Lam. seeds in the course of storage involves reserve degradation. Acta Physiolgy Plant 39:01–10. https://doi.org/10.1007/s11738-017-2572-9

    Article  Google Scholar 

  3. Ataíde GM, Borges EEL, Flores AV, Castro RVO (2015) Nitric oxide on the germination of Dalbergia nigra seeds with low vigor. Rev Ciên Agrár 38:438–444

    Google Scholar 

  4. Azerêdo GA, Paula RC, Valeri SV (2011) Determining the viability of Piptadenia moniliformis Benth seeds with the tetrazolium test. J Seed Sci 33:61–68. https://doi.org/10.1590/S0101-31222011000100007

    Article  Google Scholar 

  5. Barros-Galvão T, Alves-de-Oliveira DF, Macêdo CEC, Voigt EL (2016) Modulation of reserve mobilization by sucrose, glutamine, and abscisic acid during seedling establishment in sunflower. Acta Physiol Plant 36:11–21

    Google Scholar 

  6. Beevers L (1968) Protein degradation and proteolytic activity in the cotyledons of germinating pea seeds (Pisum sativum). Phytochem 7:1837–1844

    CAS  Article  Google Scholar 

  7. Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer, New York

    Google Scholar 

  8. Bilal MS, Abidi AB (2015) Physiological and biochemical changes during seed deterioration: a review. Int J Rec Sci Res 6:3416–3422

    Google Scholar 

  9. Black M, Bewley JD, Halmer P (2006) The encyclopedia of seeds: science, technology and uses. CAB Internetional, Wallingford

    Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  Google Scholar 

  11. Brazil - Ministério da Agricultura, Pecuária e Abastecimento (2009) Regras para análise de sementes. Secretaria de Defesa Agropecuária, Brasília

    Google Scholar 

  12. Brazil - Ministério da Agricultura, Pecuária e Abastecimento (2013) Instruções para a análise de sementes de espécies florestais. Secretaria de Defesa Agropecuária, Brasília

    Google Scholar 

  13. Castellión M, Matiacevich S, Buera P, Maldonado S (2010) Protein deterioration and longevity of quinoa seeds during long-term storage. Food Chem 121:952–958. https://doi.org/10.1016/j.foodchem.2010.01.025

    CAS  Article  Google Scholar 

  14. Correia LAS, Medeiros JAD, Silva AB, Ferrari CS, Pacheco MV (2017) Physiological quality of catanduva seeds under Callosobruchus maculatus (Coleoptera: Bruchidae) infestation. Rev Agro Tec 38:65–70

    Article  Google Scholar 

  15. Dias DCFS, Oliveira GL, Vallory GG, Silva LJ, Soares MM (2016) Physiological changes in Jatropha curcas L. seeds during storage. J Seed Sci 38:41–49

    Article  Google Scholar 

  16. Donazzolo J, Ornellas TS, Bizzocchi L, Vilperte V, Nodari RO (2015) The cold storage prolongs the viability of feijoa seeds. Rev Bras Frutic 37:748–754

    Article  Google Scholar 

  17. Elarbi MB, Khemiri H, Jridi T, Hamida JB (2009) Purification and characterization of α-amylase from safflower (Carthamus tinctorius L.) germinating seeds. C R Biol 332:426–432

    Article  Google Scholar 

  18. Flores AV, Ataíde GM, Castro VO, Borges EEL, Pereira RMD (2018) Physiological and biochemical alterations on the storage of Cedrela fissilis Vellozo seeds. Floresta 48:01–08

    Article  Google Scholar 

  19. Fu YB, Ahmed Z, Diederichsen A (2015) Towards a better monitoring of seed ageing under ex situ seed conservation. Conserv Physiol. https://doi.org/10.1093/conphys/cov026

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guedes RS, Alves EU, Gonçalves EP, Viana JS, França PRC, Santos SS (2010) Physiological quality of Amburana cearensis (Allemão) A.C. Smith seeds stored. Cien Agrar 31:331–342

    Article  Google Scholar 

  21. Jyoti CP, Malik CP (2013) Seed deterioration: a review. Int J Life Sci Biotechnol Pharma Res 2:374–385

    Google Scholar 

  22. Lehner A, Mamadoua N, Poelsb P, Comea D, Baillya C, Corbineaua F (2008) Changes in soluble carbohydrates, lipid peroxidation and antioxidant enzyme activities in the embryo during ageing in wheat grains. J Cereal Sci 47:555–565. https://doi.org/10.1016/j.jcs.2007.06.017

    CAS  Article  Google Scholar 

  23. Maguire JD (1962) Speed of germination aid selection and evaluation for seedling emergence and vigour. Crop Sci 2:176–177

    Article  Google Scholar 

  24. Maia-Silva C, Silva CI, Hrncir M, Queiroz RT, Imperatriz-Fonseca VL (2012) Guia de plantas: visitadas por abelhas na Caatinga, 1st edn. Fundação Brasil Cidadão, Fortaleza

    Google Scholar 

  25. Martins CC, Pinto MADSC (2014) Storage of Handroanthus umbellatus seeds. Ci Fl 24:533–539

    Article  Google Scholar 

  26. Mathews S, Powell AA (2006) Electrical conductivity vigour test: physiological basis and use. ISTA News Bull 131:32–35

    Google Scholar 

  27. McCready RM, Guggolz J, Silviera V, Owens HS (1950) Determination of starch and amylose in vegetables: application to peas. Anal Chem 22:1156–1158. https://doi.org/10.1021/ac60045a016

    CAS  Article  Google Scholar 

  28. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    CAS  Article  Google Scholar 

  29. Moncaleano-Escandon J, Silva BCF, Silva SRS, Granja JAA, Alves MCJL, Pompelli MF (2013) Germination responses of Jatropha curcas L. seeds to storage and aging. Ind Crops Prod 44:684–690

    CAS  Article  Google Scholar 

  30. Moro MF, Lughadha EN, Araújo FS, Martins FR (2016) A phytogeographical metaanalysis of the semiarid Caatinga domain in Brazil. Bot Rev 82:91–148

    Article  Google Scholar 

  31. Morris DL (1948) Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science 107:254–255. https://doi.org/10.1126/science.107.2775.254

    CAS  Article  PubMed  Google Scholar 

  32. Murthy UMN, Sun WQ (2000) Protein modification by Amadori and Maillard reactions during seed storage: roles of sugar hydrolysis and lipid peroxidation. J Exp Bot 51:1221–1228

    CAS  Article  Google Scholar 

  33. Murthy UMN, Kumar PP, Sun WQ (2003) Mechanisms of seed ageing under different storage conditions for Vigna radiata (L.) Wilczek: lipid peroxidation, sugar hydrolysis, Maillard reactions and their relationship to glass state transition. J Exp Bot 54:1057–1067

    CAS  Article  Google Scholar 

  34. Oliveira LM, Ribeiro MCC, Maracajá PG, Carvalho GS (2009) Different packaging, environmental conditions and storage periods influencing the physiological quality of moringa seeds. RC 22:70–75

    Google Scholar 

  35. Parkhey S, Naithani SC, Keshavkant S (2014) Protein metabolism during natural ageing in desiccating recalcitrant seeds of Shorea robusta Acta Physiol Plant 36:1649–1659

    CAS  Article  Google Scholar 

  36. Pereira FECB, Medeiros-Filho S, Torres SB, Martins CC, Brito SF (2016) Saline stress and temperatures on germination and vigor of Piptadenia moniliformis Benth. seeds. Rev Bras Eng Agríc Ambient 20:649–653

    Article  Google Scholar 

  37. Pinheiro FM, Nair PKR (2018) Silvopasture in the Caatinga biome of Brazil: a review of its ecology, management, and development opportunities. For Syst 27:Er01S. https://doi.org/10.5424/fs/2018271-12267

    Article  Google Scholar 

  38. Popova EA, Mironova RS, Odjakova MK (2010) Non-enzymatic glycosylation and deglycating enzymes. Biotechnol Biotechnol Equip 24:1928–1935

    CAS  Article  Google Scholar 

  39. Ribeiro LP, Leite Filho AT, Silva LBJ, Silva VF, Borges EEL (2018) Physiological and biochemical changes in brazilian pepper (Schinus terebinthifolius Raddi) seeds during storage. Rev Árvore 42:e42011. https://doi.org/10.1590/1806-90882018000100005

    Article  Google Scholar 

  40. Ribeiro RC, Gomes SEV, Dantas BF (2018) Physiological quality of Erythrina velutina Willd. seeds (FABACEAE) under different storage conditions. Sci Flor 46:562–570

    Google Scholar 

  41. Rodrigues-Junior AG, Faria JMR, Vaz TAA, José AC (2015) Loss of desiccation tolerance and storage behavior in germinating seeds of Senna multijuga: implications for seed germination and conservation. New For 46:283–291

    Article  Google Scholar 

  42. Shaban M (2013) Review on physiological aspects of seed deterioration. Int J Agric Crop Sci 6:627–631

    CAS  Google Scholar 

  43. Silva DG, Carvalho MLM, Nery MC, Oliveira LM, Caldeira CM (2011) Physiological and biochemical properties changes during storage of Tabebuia serratifolia seeds. Cerne 17:01–07. https://doi.org/10.1590/S0104-77602011000100001

    Article  Google Scholar 

  44. Strelec I, Ugarčić-Hardi Ž, Hlevnjak M (2008) Accumulation of Amadori and Maillard products in wheat seeds aged under different storage conditions. Croatia Chemi Acta 81:131–137

    CAS  Google Scholar 

  45. Van Handel E (1968) Direct microdetermination of sucrose. Anal Biochem 22:280–283. https://doi.org/10.1016/0003-2697(68)90317-5

    Article  PubMed  Google Scholar 

  46. Veselova TV, Veselovsky VA, Obroucheva NV (2015) Deterioration mechanisms in air-dry pea seeds during early aging. Plant Physiol Biochem 87:133–139

    CAS  Article  Google Scholar 

  47. Veselovsky VA, Veselova TV (2012) Lipid peroxidation, carbohydrate hydrolysis, and Amadori–Maillard reaction at early stages of dry seed aging. Russ J Plant Physiol 59:811–817

    CAS  Article  Google Scholar 

  48. Walters C, Ballesterosa D, Vertucci VA (2010) Structural mechanics of seed deterioration: standing the test of time. Plant Sci 179:565–573

    CAS  Article  Google Scholar 

  49. Yemm EW, Cocking EF (1955) The determination of amino acids with ninhydrin. Analyst 80:209–213

    CAS  Article  Google Scholar 

  50. Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    CAS  Article  Google Scholar 

  51. Zhang J, Wang H, Liao S, Cui K (2019) Appropriate ultra-low seed moisture content stabilizes the seed longevity of Calocedrus macrolepis, associated with changes in endogenous hormones, antioxidant enzymes, soluble sugars and unsaturated fatty acids. New For 50:455–468

    Article  Google Scholar 

Download references

Acknowledgements

We thank to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the schoolarships provided to F.C.F., D.F.A.O and C.S.F.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eduardo Luiz Voigt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Felix, F.C., Alves de Oliveira, D.F., dos Santos Ferrari, C. et al. Loss of viability and vigour in the course of short-term storage of Pityrocarpa moniliformis seeds cannot be attributed to reserve degradation. New Forests 52, 237–248 (2021). https://doi.org/10.1007/s11056-020-09792-4

Download citation

Keywords

  • Caatinga
  • Carbohydrate non-enzymatic hydrolysis
  • Forest seeds
  • Reducing sugars
  • Seed deterioration