Recycled alkaline paper waste influenced growth and structure of Pinus taeda L. forest

Abstract

Alkaline residues of recycled paper production (ARRP) can be an alternative for correcting soil acidity and adding bases to Pinus taeda L. systems. Our aim was to investigate the effect of increasing doses of ARRP on tree, forest floor (litter and root), and soil composition in a 3-year-old Brazilian pine forest plantation. In 2007, ARRP treatments of 0, 10, 20, 30 and 40 T ha−1 were imposed. Tree growth and needle elemental composition were evaluated in 2008 and 2018; elemental composition of the trunk was evaluated in 2018. In 2017, accumulation and composition of litter layers were assessed: new litter, old litter, first and second sublayers of fragmented litter (Fr and Fm), and the humified layer (H); roots present in F and H layers were quantified (amount and elemental composition). In addition, soil chemical properties at different depths were evaluated in 2008, 2012, and 2017. The application of ARRP improved growth by ~ 16% up to 20 T ha−1 after 10 years. Also, ARRP increased Ca concentration in needles, trunks, roots, and all litter fractions since Ca was a major component of ARRP. There was no change in total litter accumulation with ARRP application, but an increase in the humidified fraction was observed. Root growth was enhanced by ARRP, leading to great changes in root composition in Fr and H fractions. Changes in soil pH, Ca2+, and Al3+ were observed in the 0–10 cm soil layer. Findings suggest that application of ARRP to established pine forests has the potential for improving productivity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. ABRAF (2013) Anuário estatístico ABRAF 2013 ano base 2012. Brasília

  2. Albaugh JM, Blevins L, Allen HL, Albaugh TJ, Fox TR, Stape JL, Rubilar RA (2010) Characterization of foliar macro- and micronutrient concentrations and ratios in loblolly pine plantations in the southeastern United States. South J Appl For 34:53–64

    Article  Google Scholar 

  3. Almeida HC, Ernani PR, Albuquerque JA, Mecabô Junior J, Almeida D (2008) Influência da adição de um resíduo alcalino da indústria de papel e celulose na lixiviação de cátions em um solo ácido. Rev Bras Ciência do Solo 32:1775–1784. https://doi.org/10.1590/S0100-06832008000400042

    CAS  Article  Google Scholar 

  4. Alvares CA, Stape JL, Sentelhas PC, de Moraes Gonçalves JL, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  5. Angel HZ, Priest JS, Stovall JP, Oswald BP, Weng Y, Williams HM (2019) Individual tree and stand-level carbon and nutrient contents across one rotation of loblolly pine plantations on a reclaimed surface mine. New For 50:733–753. https://doi.org/10.1007/s11056-018-09696-4

    Article  Google Scholar 

  6. Augustin S, Stephanowitz H, Wolff B, Schröder J, Hoffmann E (2005) Manganese in tree rings of Norway spruce as an indicator for soil chemical changes in the past. Eur J For Res 124:313–318. https://doi.org/10.1007/s10342-005-0084-4

    CAS  Article  Google Scholar 

  7. Augusto L, Zeller B, Midwood AJ, Swanston C, Dambrine E, Schneider A, Bosc A (2011) Two-year dynamics of foliage labelling in 8-year-old Pinus pinaster trees with 15N, 26Mg and 42Ca—simulation of Ca transport in xylem using an upscaling approach. Ann For Sci 68:169–178. https://doi.org/10.1007/s13595-011-0018-x

    Article  Google Scholar 

  8. Babel U (1972) Moderprofile in waldern. Landwirtschaftliche Hochschule Hohenheim, Stuttgart

    Google Scholar 

  9. Balbinot Junior AA, da Veiga M, da Fonseca JA, Vogt GA, Albuquerque JA, Costa ERO (2014) Aplicação de resíduo de reciclagem de papel em Cambissolo Háplico e seu efeito no solo e no cultivo de plantas. Rev Bras Ciência do Solo 38:336–344. https://doi.org/10.1590/S0100-06832014000100034

    Article  Google Scholar 

  10. Batista AH, Motta ACV, Reissmann CB, Schneider T, Martins IL, Hashimoto M (2014) Liming and fertilisation in Pinus taeda plantations with severe nutrient deficiency in savanna soils. Acta Sci Agron 37:117–125. https://doi.org/10.4025/actasciagron.v37i1.18061

    Article  Google Scholar 

  11. Bellote AFJ, da Silva HD, Ferreira CA, Andrade GC (1998) Resíduos da indústria de celulose em plantios florestais. Bol Pesqui Florest 37:99–106

    Google Scholar 

  12. Bizon JMC (2006) Avaliação da sustentabilidade nutricional de plantios de Pinus taeda L usando um balanço de entrada-saída de nutrientes. Universidade de São Paulo, Piracicaba. https://doi.org/10.11606/D.11.2006.tde-22102007-092659

    Google Scholar 

  13. Brandtberg PO, Simonsson M (2003) Aluminum and iron chemistry in the O horizon changed by a shift in tree species composition. Biogeochemistry 63:207–228

    CAS  Article  Google Scholar 

  14. Breemen NV, Finlay R, Lundström U, Jongmans AG, Giesler R, Olsson M (2000) Mycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry 49:53–67. https://doi.org/10.1023/A:100625623

    Article  Google Scholar 

  15. Brickell JE (1981) Stem analysis: a conventional approach to volume determination. GTR INT-193

  16. Brown BA, Munsell RI, Holt RF, King AV (1956) Soil reactions at various depths as influenced by time since application and amounts of limestone. Soil Sci Soc Am J 20:518–522. https://doi.org/10.2136/sssaj1956.03615995002000040017x

    CAS  Article  Google Scholar 

  17. Carmeis Filho ACA, Penn CJ, Crusciol CAC, Calonego JC (2017) Lime and phosphogypsum impacts on soil organic matter pools in a tropical Oxisol under long-term no-till conditions. Agric Ecosyst Environ 241:11–23. https://doi.org/10.1016/j.agee.2017.02.027

    CAS  Article  Google Scholar 

  18. Carmeis Filho ACA, Crusciol CAC, Guimarães TM, Calonego JC, da Costa CHM (2018) Changes in soil physical properties and carbon protection mechanisms by surface application of lime in a tropical no-tillage system. Soil Sci Soc Am J 82:56–65. https://doi.org/10.2136/sssaj2017.04.0120

    CAS  Article  Google Scholar 

  19. Colin-Belgrand M (1996) Internal nutrient translocation in chestnut tree stemwood: III. Dynamics across an age series of Castanea sativa (Miller). Ann Bot 78:729–740. https://doi.org/10.1006/anbo.1996.0183

    Article  Google Scholar 

  20. Costa ERO, Rizzi NE, da Silva HD, Maeda S, Lavaroni OJ (2009) Alterações químicas do solo após aplicação de biossólidos de estação de tratamento de efluentes de fábrica de papel reciclado. Floresta 39:1–10. https://doi.org/10.5380/rf.v39i1.13720

    Article  Google Scholar 

  21. CPRM - Serviço Geológico do Brasil (2014) Mapa Geológico do Estado de Santa Catarina. Escala 1:500.000

    Google Scholar 

  22. Dickow KMC, Velho GA A, Costa ERO (2016) Incorporação de resíduo de estação de tratamento de efluentes de fábrica de papel reciclado ao solo. In: Anais Do 7° Forum Internacional de Resíduos Sólidos, Porto Alegre

  23. FerrazMomentel AVLT, Poggiani F (2016) Soil fertility, growth and mineral nutrition in Eucalyptus grandis plantation fertilized with different kinds of sewage sludge. New For 47:861–876. https://doi.org/10.1007/s11056-016-9549-1

    Article  Google Scholar 

  24. Ferreira CA, Silva HD da, Reissmann CB, Bellote AFJ, Marques R (2001) Nutrição de pinus no Sul do Brasil: diagnóstico e prioridades de pesquisa. Embrapa Florestas-Documentos (INFOTECA-E)

  25. Gascho GJ, Parker MB (2001) Long-term liming effects on coastal plain soils and crops. Agron J 93:1305–1315. https://doi.org/10.2134/agronj2001.1305

    Article  Google Scholar 

  26. Goya JF, Frangi JL, Pérez CA, Tea FD (2008) Decomposition and nutrient release from leaf litter in Eucalyptus grandis plantations on three different soils in Entre Ríos, Argentina. Bosque 29:217–226

    Article  Google Scholar 

  27. Guerra CJ, Gayoso AJ, Schlatter VJ, Nespolo RR (2005) Análisis de la biomasa de raíces en diferentes tipos de bosques: Avances en la evaluación de Pinus radiata en Chile. Bosque (Valdivia) 26:5–21. https://doi.org/10.4067/S0717-92002005000100002

    Article  Google Scholar 

  28. Hevia A, Sánchez-Salguero R, Camarero JJ, Buras A, Sangüesa-Barreda G, Galván JD, Gutiérrez E (2018) Towards a better understanding of long-term wood-chemistry variations in old-growth forests: a case study on ancient Pinus uncinata trees from the Pyrenees. Sci Total Environ 625:220–232. https://doi.org/10.1016/j.scitotenv.2017.12.229

    CAS  Article  PubMed  Google Scholar 

  29. IBA-Indústria Brasileira de Árvores (2015) Indústria brasileira de árvores 2015, São Paulo

  30. IBGE-Intitudo Brasileiro de Geografia e Estatística (2015) Manual técnico de pedologia: guia prático de campo, 3rd edn. Rio de Janeiro

  31. IBGE-Intitudo Brasileiro de Geografia e Estatística (2017) Produção da Extração Vegetal e da Silvicultura

  32. Jandl R, Kopeszki H, Bruckner A, Hager H (2003) Forest soil chemistry and mesofauna 20 years after an amelioration fertilization. Restor Ecol 11:239–246. https://doi.org/10.1046/j.1526-100X.2003.00179.x

    Article  Google Scholar 

  33. Jansen S, Watanabe T, Caris P, Geuten K, Lens F, Pyck N, Smets E (2004) The distribution and phylogeny of aluminium accumulating plants in the Ericales. Plant Biol 6:498–505. https://doi.org/10.1055/s-2004-820980

    CAS  Article  PubMed  Google Scholar 

  34. Jonczak J (2014) Effect of land use on the carbon and nitrogen forms in humic horizons of Stagnic Luvisols. J Elem 19:1037–1048. https://doi.org/10.5601/jelem.2014.19.3.345

    Article  Google Scholar 

  35. Jorge LAC, Rodrigues AFO (2008) Safira: Sistema de Análise de Fibras e Raízes. INFOTECA-E, São Carlos

    Google Scholar 

  36. Kerndorff H, Schnitzer M (1980) Sorption of metals on humic acid. Geochim Cosmochim Acta 44:1701–1708. https://doi.org/10.1016/0016-7037(80)90221-5

    CAS  Article  Google Scholar 

  37. Koch DW, Estes GO (1986) Liming rate and method in relation to forage establishment—crop and soil chemical responses. Agron J 78:567–571. https://doi.org/10.2134/agronj1986.00021962007800040002x

    Article  Google Scholar 

  38. Kogelmann WJ, Sharpe WE (2006) Soil acidity and manganese in declining and nondeclining sugar maple stands in Pennsylvania. J Environ Qual 35:433–441. https://doi.org/10.2134/jeq2004.0347

    CAS  Article  PubMed  Google Scholar 

  39. Krishna MP, Mohan M (2017) Litter decomposition in forest ecosystems: a review. Energy Ecol Environ 2:236–249. https://doi.org/10.1007/s40974-017-0064-9

    Article  Google Scholar 

  40. Kuang YW, Zhou GY, Chu GW, Sun FF, Li J (2008) Reconstruction of soil pH by dendrochemistry of Masson pine at two forested sites in the Pearl River Delta. South China Ann For Sci 65:804. https://doi.org/10.1051/forest

    Article  Google Scholar 

  41. Lehto T (1994) Effects of soil pH and calcium on mycorrhizas of Picea abies. Plant Soil 163:69–75. https://doi.org/10.1007/BF00033942

    CAS  Article  Google Scholar 

  42. Lopes VG, Schumacher MV, Calil FN, Viera M, Witschoreck R (2010) Quantificação de raízes finas em um povoamento de Pinus taeda l. e uma área de campo em Cambará do Sul. RS Ciência Florest 20:569–578. https://doi.org/10.5902/198050982415

    Article  Google Scholar 

  43. Maeda S, Gomes JBV, Bognola IA (2018) Efeitos da aplicação de lodo celulósico e de cinza de caldeira em área de produção de Pinus taeda. Embrapa Florestas-Documentos (INFOTECA-E)

  44. Maeda S, Silva HD, Costa ERO, Bognola IA (2011) Aplicação de resíduo alcalino de papel reciclado em plantios de pinus. Embrapa Florestas-Documentos (INFOTECA-E)

  45. Martins APL, Reissmann CB (2007) Material vegetal e as rotinas laboratoriais nos procedimentos químico-analíticos. Sci Agrar 8:1–17. https://doi.org/10.5380/rsa.v8i1.8336

    Article  Google Scholar 

  46. Moro L, Gatiboni LC, Simonete MA, Cassol PC, Chaves DM (2014) Response of one-, five-, and nine-year-old Pinus taeda to NPK fertilization in southern Brazil. Rev Bras Ciência do Solo 38:1181–1189. https://doi.org/10.1590/S0100-06832014000400014

    Article  Google Scholar 

  47. Muse JK, Mitchell CC (1995) Paper mill boiler ash and lime by-products as soil liming materials. Agron J 87:432–438. https://doi.org/10.2134/agronj1995.00021962008700030008x

    Article  Google Scholar 

  48. Pauletti V, Motta ACV (2019) Manual de adubação e calagem para o estado do Paraná. Sociedade Brasileira de Ciência do Solo, Núcleo Estadual Paraná, Curitiba

    Google Scholar 

  49. Pehlivan E, Arslan G (2006) Uptake of metal ions on humic acids. energy sources. Part A Recover Util Environ Eff 28:1099–1112. https://doi.org/10.1080/009083190910451

    CAS  Article  Google Scholar 

  50. Pértile P, Albuquerque JA, Gatiboni LC, da Costa A, Warmling MI (2012) Application of alkaline waste from pulp industry to acid soil with pine. Rev Bras Ciência do Solo 36:939–950. https://doi.org/10.1590/S0100-06832012000300024

    Article  Google Scholar 

  51. Pinto Júnior JE, dos Santos PET, de Aguiar AV, Kalil Filho AN, Paludzyszyn Filho E, Sturion JA, de Resende MDV, de Sousa VA (2013) Melhoramento genético de espécies arbóreas na Embrapa Florestas: uma visão histórica. Embrapa Florestas, Colombo

    Google Scholar 

  52. Platte EB (2002) Aplicação de lama de cal em solo de Floresta de Pinus taeda seus efeitos sobre a microbiota do solo e biodegradabilidade da serrapilheira. Universidade Federal do Rio Grande do Sul, Porto Alegre

    Google Scholar 

  53. Reissmann CB (2002) Exigências nutricionais nos plantios de Pinus. Rev da Madeira 12:34–40

    Google Scholar 

  54. Rocha JHT, du Toit B, Gonçalves JLM (2019) Ca and Mg nutrition and its application in Eucalyptus and Pinus plantations. For Ecol Manag 442:63–78. https://doi.org/10.1016/j.foreco.2019.03.062

    Article  Google Scholar 

  55. Rodrigues CM, Bellote AFJ, Dedecek RA, Gomes FS (2005) Alterações na nutrição e na produtividade do Pinus taeda L. provocadas pela aplicação de resíduo celulósico. Bol Pesqui Florest 51:131–143

    Google Scholar 

  56. Rodriguez DRO, Tomazello-Filho M (2019) Clues to wood quality and production from analyzing ring width and density variabilities of fertilized Pinus taeda trees. New Forest 50:821–843

    Article  Google Scholar 

  57. Rodriguez DRO, Andrade GC, Bellote AFJ, Tomazello-Filho M (2018) Effect of pulp and paper mill sludge on the development of 17-year-old loblolly pine (Pinus taeda L.) trees in Southern Brazil. For Ecol Manag 422:179–189. https://doi.org/10.1016/j.foreco.2018.04.016

    Article  Google Scholar 

  58. Sanquetta CR, Corte APD, Pelissari AL, Tomé M, Maas GCB, Sanquetta MNI (2018) Dinâmica em superfície, volume, biomassa e carbono nas florestas plantadas brasileiras: 1990–2016. BIOFIX Sci J 3:152–160. https://doi.org/10.5380/biofix.v3i1.58384

    Article  Google Scholar 

  59. Schumacher MV, Viera M, Witschoreck R (2008) Produção de serapilheira e transferência de nutrientes em área de segunda rotação com floresta de Pinus taeda L. no município de Cambará do Sul, RS. Ciência Florest 18:471–480. https://doi.org/10.5902/19805098431

    Article  Google Scholar 

  60. Sims JT (1986) Soil pH Effects on the distribution and plant availability of manganese, copper, and zinc. Soil Sci Soc Am J 50(367):373. https://doi.org/10.2136/sssaj1986.03615995005000020023x

    Article  Google Scholar 

  61. Team RC (2014) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  62. Thirukkumaran CM, Parkinson D (2002) Microbial activity, nutrient dynamics and litter decomposition in a Canadian Rocky Mountain pine forest as affected by N and P fertilizers. For Ecol Manag 159:187–201. https://doi.org/10.1016/S0378-1127(01)00432-7

    Article  Google Scholar 

  63. Vanguelova EI, Hirano Y, Eldhuset TD, Sas-Paszt L, Bakker MR, Püttsepp Ü, Brunner I, Lõhmus K, Godbold D (2007) Tree fine root Ca/Al molar ratio—indicator of Al and acidity stress. Plant Biosyst Int J Deal Asp Plant Biol 141:460–480. https://doi.org/10.1080/11263500701626192

    Article  Google Scholar 

  64. Viera M, Schumacher MV (2009) Concentração e retranslocação de nutrientes em acículas de Pinus taeda L. Ciência Florest 19:375–382. https://doi.org/10.5902/19805098893

    Article  Google Scholar 

  65. Viera M, Schumacher MV (2010) Teores e aporte de nutrientes na serapilheira de Pinus taeda L., e sua relação com a temperatura do ar e pluviosidade. Rev Árvore 34:85–94. https://doi.org/10.1590/S0100-67622010000100010

    CAS  Article  Google Scholar 

  66. Wang L, Katzensteiner K, Schume H, Van Loo M, Godbold DL (2016) Potassium fertilization affects the distribution of fine roots but does not change ectomycorrhizal community structure. Ann For Sci 73:691–702. https://doi.org/10.1007/s13595-016-0556-3

    Article  Google Scholar 

  67. Wienand KT, Stock WD (1995) Long-term phosphorus fertilization effects on the litter dynamics of an age sequence of Pinus elliottii plantations in the southern Cape of South Africa. For Ecol Manag 75:135–146. https://doi.org/10.1016/0378-1127(95)03528-I

    Article  Google Scholar 

  68. Winagraski E (2014) Dinâmica de ectomicorrizas em plantio adulto de Pinus taeda submetido a adubação e calagem no Município de Jaguariaiva, PR. Universidade Federal do Paraná, Curitiba

    Google Scholar 

  69. Yanai RD, Phillips RP, Arthur MA, Siccama TG, Hane EN (2005) Spatial and temporal variation in calcium and aluminum in northern hardwood forest floors. Water Air Soil Pollut 160:109–118. https://doi.org/10.1007/s11270-005-3940-4

    CAS  Article  Google Scholar 

  70. Young MJ, Johnson JE, Thiel DA (1993) Effects of paper mill sludge and weed control on competing vegetation and growth of young red pine. New For 7:345–361

    Google Scholar 

Download references

Acknowledgements

The authors thank the Cahdan Volta Grande Brazilian paper companies and staff (Forest Eng. Daniel Maros) and Embrapa Floresta for field work support. Antônio Carlos Vargas Motta is grateful to the National Council for Scientific and Technological Development (CNPq) for financial support (project n° 306908/2016-6) and to the Coordination for the Improvement of Higher Education Personnel (CAPES) for scholarship support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ederlan Magri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 75 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rabel, D.d., Maeda, S., Araujo, E.M. et al. Recycled alkaline paper waste influenced growth and structure of Pinus taeda L. forest. New Forests 52, 249–270 (2021). https://doi.org/10.1007/s11056-020-09791-5

Download citation

Keywords

  • Calcium
  • Litter
  • Mean annual increment
  • Needles
  • Wood