New Forests

, Volume 47, Issue 4, pp 541–564 | Cite as

Composition of hybrid larch (Larix × eurolepis Henry) forest reproductive materials: How much does hybrid percentage affect stand performance?

  • Gwenaël Philippe
  • Corinne Buret
  • Stéphane Matz
  • Luc E. Pâques


The performance of hybrid larch (Larix × eurolepis) stands may be altered by the fact that the seed lots produced in hybridization seed orchards always contain a proportion of non-hybrid seeds. We studied the effect of such hybrid/non-hybrid mixtures on the productivity and quality of young plantations, through a three-step process: determination of tree species identity with cytoplasmic DNA markers, comparison of hybrid and non-hybrid tree performance, and finally, assessment of thinning impact on hybrid percentage. Overall, we analyzed progenies from eight commercial seed orchards at three sites. Huge variations in hybrid percentage were found among orchard progenies. Globally, the results concerning survival, susceptibility to drought and to Meria laricis, growth, stem form and wood stiffness were clearly in favor of hybrids. In particular, they grew faster than the non-hybrid trees and exhibited a more homogeneous growth than the mixed progenies. Hybrid superiority was highest for orchards composed of a single maternal clone of a species which was poorly adapted to the planting site. Hybrid percentage was enhanced by successive thinnings. However, a serious loss of income is expected when planting progenies characterized by low initial hybrid percentage and high hybrid superiority. Moreover, variations in hybrid percentage proved to be problematic in seed orchard testing as seed orchard ranking may change depending on whether it is based on the performance of all trees or hybrids only. These variations reduce the reliability of the recommendations typically made to forest owners. For commercial and silvicultural reasons, we suggest setting a minimal threshold level of 60–70 % for hybrid percentage in marketed forest reproductive materials.


Hybrid larch Hybrid percentage Forest reproductive material Seed orchard Thinning Growth 



This study was initiated in the frame of the European project “Towards a European larch wood chain” (FAIR5-CT 98-3354 and CEC-NEI-IC20 CT98-0310) funded by the European Commission. From 2002 on, it received financial support from the French Ministry in charge of forests (Direction générale de la performance économique et environnementale des entreprises—DGPE). We thank the foreign scientists who shared seeds from their seed orchards, the managers of the trials (ONF: French Forest Service) and the technical staff who carried out the field measurements (D. Veisse from INRA-UE GBFOR and ONF-PNRGF at Peyrat-le-Château). We also acknowledge E. Collin and the three anonymous reviewers for their useful comments, as well as Vicki Moore for reviewing the English manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Acheré V, Rampant PF, Pâques LE, Prat D (2004) Chloroplast and mitochondrial molecular tests identify European × Japanese larch hybrids. Theor Appl Genet 108:1643–1649CrossRefPubMedGoogle Scholar
  2. Baltunis BS, Greenwood MS, Eysteinsson T (1998) Hybrid vigor in Larix: growth of intra- and interspecific hybrids of Larix decidua, L. laricina and L. kaempferi after 5-years. Silvae Genet 47(5–6):288–293Google Scholar
  3. Bastien JC, Keller R (1980) Intérêts comparés du mélèze hybride (Larix × eurolepis Henry) avec les deux espèces parentes. RFF 32(6):521–530CrossRefGoogle Scholar
  4. Batko S (1955) Meria laricis on Japanese and hybrid larch in Britain. Trans Br Mycol Soc 39(1):13–16CrossRefGoogle Scholar
  5. Bergmann F, Ruetz W (1987) Identifizierung von Hybridlärchensaatgut aus Samenplantagen mit Hilfe eines Isoenzym-Markers. Silvae Genet 36(2):102–105Google Scholar
  6. Biging GS, Dobbertin M (1995) Evaluation of competition indices in individual tree growth models. For Sci 41(2):360–377Google Scholar
  7. Colas F, Perron M, Tousignant D, Parent C, Pelletier M, Lemay P (2008) A novel approach for the operational production of hybrid larch seeds under northern climatic conditions. For Chron 84(1):95–104CrossRefGoogle Scholar
  8. Council Directive 1999/105/EC of 22 December 1999 on the marketing of forest reproductive material (2000) In: Official Journal of the European Communities, Brussels, 15 January 2000, L11, article 6 and annexes, pp 17–40Google Scholar
  9. Dieckert H (1964) Einige untersuchungen zur selbststerilität und inzucht bei fichte und lärche. Silvae Genet 13:77–86Google Scholar
  10. Edwards MV (1956) The hybrid larch Larix × eurolepis Henry. Forestry 24:29–43CrossRefGoogle Scholar
  11. Ennos RA, Qian T (1994) Monitoring the output of a hybrid larch seed orchard using isozyme markers. Forestry 67(1):63–74CrossRefGoogle Scholar
  12. Ferrand JC, Bastien JC (1985) Bilan à 26 ans d’une plantation comparative de mélèzes. Revue Forestière Française XXXVII 6:441–448CrossRefGoogle Scholar
  13. Häcker M, Bergmann F (1991) The proportion of hybrids in seed from seed orchard composed of two larch species (L. europaea and L. leptolepis). Ann Sci For 48:631–640CrossRefGoogle Scholar
  14. Hall JP, Brown IR (1977) Embryo development and yield of seed in Larix. Silvae Genet 26(2–3):77–84Google Scholar
  15. Henry A, Flood MG (1919) History of Dunkeld hybrid larch, Larix eurolepis, with notes on other hybrid conifers. Proc R Ir Acad Sect B 35(4):55–66Google Scholar
  16. Kosinski G (1986) Empty seed production in European larch (Larix decidua Mill.). For Ecol. Manage 19(1–4):57–63Google Scholar
  17. Lacaze JF, Birot Y (1974) Bilan d’une expérience comparative de provenances de mélèzes à l’âge de 13 ans. Ann Sci For 22(2):321–351Google Scholar
  18. Lanier L, Joly P, Bondoux P, Bellemère A (1976) Les maladies du mélèze. In: Mycologie et pathologie forestières, Tome II Pathologie forestière. Masson, Paris, p 478Google Scholar
  19. Launay J, Rozenberg P, Pâques LE, Dewitte JM (2000) A new experimental device for rapid measurement of the trunk equivalent modulus of elasticity on standing trees. Ann For Sci 57:351–359CrossRefGoogle Scholar
  20. Lewandowski E, Nikkanen T, Burczyk J (1994) Production of hybrid seed in a seed orchard of two larch species, Larix sibirica and Larix decidua. Scand J For Res 9(3):214–217CrossRefGoogle Scholar
  21. Magnussen S (1990) Selection index: economic weights for maximum simultaneous genetic gain. Theor Appl Genet 79:289–293CrossRefPubMedGoogle Scholar
  22. Miller JT, Thulin IJ (1967) Five-year survival and height compared for European, Japanese and hybrid larch in New Zealand. Research leaflet 17, New Zealand Forest ServiceGoogle Scholar
  23. Myking T, Skoppa T (2006) Certification of forest reproductive material—is present practice sufficient? IPGRI newsletter for Europe, no 33, Nov. 2006, p 13Google Scholar
  24. Nanson A (2004) Génétique et amélioration des arbres forestiers. Les presses agronomiques de Gembloux, Gembloux, p 712Google Scholar
  25. Nanson A, Sacré E (1978) A propos de l’hétérosis de Larix × eurolepis en particulier pour les propriétés du bois. Bull Rech Agron Gembloux 13(4):323–336Google Scholar
  26. Owens JN (1995) Reproductive biology of larch. In: Ecology and management of Larix forests: a look ahead, proceedings of an international symposium, Whitefish, Montana, USA, Oct. 5–9, 1992, Schmidt WC and McDonald KJ (compilers), pp 97–109Google Scholar
  27. Owens JN, Blake MD (1985) Forest tree seed production. Canadian Forestry Service, Petawawa National Forestry Institute, Chalk River, Ontario. Information Report PI-X-53, p 161Google Scholar
  28. Pâques LE (1992) Performance of vegetatively propagated Larix decidua, L. kaempferi and L. laricina hybrids. Ann Sci For 49:63–74CrossRefGoogle Scholar
  29. Pâques LE, Rozenberg P (2009) Ranking larch genotypes with the Rigidimeter: relationships between modulus of elasticity of standing trees and of sawn timber. Ann For Sci 66(4):1–7CrossRefGoogle Scholar
  30. Pâques LE, Philippe G, Prat D (2006) Identification of European and Japanese larch and their interspecific hybrid with morphological markers: application to young seedlings. Silvae Genet 55(3):123–134Google Scholar
  31. Pâques LE, Foffova E, Heinze B, Lelu-Walter MA, Liesebach M, Philippe G (2013) Larches (Larix sp.). In: Pâques LE (ed) Forest tree breeding in Europe: current state-of-the-art and perspectives, Part I Breeding of conifers. Springer, Netherlands, pp 13–122CrossRefGoogle Scholar
  32. Pauwels D, Rondeux J (1999) Tarifs de cubage pour les petits bois de mélèze en Ardenne. Cahiers forestiers de Gembloux, no 23Google Scholar
  33. Pauwels D, Rondeux J (2000) Le mélèze, une essence à haut potentiel de production. Silva Belg 107(3):6–10Google Scholar
  34. Philippe G, Baldet P (1997) Electrostatic dusting: an efficient technique of pollination in larch. Ann Sci For 54:301–310CrossRefGoogle Scholar
  35. Philippe G, Curnel Y, Jacques D, Lee SJ, Matz S (2002) Performances of hybrid larch (Larix × eurolepis Henry) varieties across Europe: early results for survival stem form and growth rate. In: Proceedings meeting IUFRO WP S2.02-07, compiled by Pâques LE, Gap, Auvergne & Limousin, September 16–21, 2002, pp 127–139Google Scholar
  36. Philippe G, Baldet P, Héois B, Ginisty C (2006) Reproduction sexuée des conifères et production de semences en vergers à graines. Quae, Versailles, p 572Google Scholar
  37. Reck S (1980) Untersuchung über das holz der hybridlärche. Allg Forst-u J Ztg 151(6/7):117–120Google Scholar
  38. Ridley GS, Dick MA (2001) An introduction to the diseases of forest and amenity trees in New Zealand. Scion For Res Bull 220.
  39. Slobodnik B, Guttenberger H (2005) Zygotic embryogenesis and empty seed formation in European larch (Larix decidua Mill.). Ann For Sci 62:129–134CrossRefGoogle Scholar
  40. Sylvestre G, Pâques LE, Delatour C (1999) Résistance du mélèze hybride inoculé par Lachnellula willkommii. Ann Sci For 56:485–492CrossRefGoogle Scholar
  41. Sylvestre-Guinot G, Delatour C (1983) Possibilité d’appréciation de la sensibilité du genre Larix au Lechnellula willkommii (Hartig) dennis par inoculations artificielles. Ann Sci For 40:337–354CrossRefGoogle Scholar
  42. Thill A, Palm R (1984) Etude dendrométrique des mélèzes. Notes du Centre d’Ecologie Forestière et Rurale no 47, GemblouxGoogle Scholar
  43. van’t Leven EM (1979) De zaagaarden van Staatsbosbeher (The seed orchards of the State Forest Service). Rijkinstituut voor onderzoek in de bos-en landschapsbouw “De Dorschkamp”, Wageningen, The Netherlands, Mededeling nr 178:1–32Google Scholar
  44. Williams CG (2007) Re-thinking the embryo lethal system within the Pinaceae. Can J Bot 85:667–677CrossRefGoogle Scholar
  45. Zaczek JJ, Steiner KC, Shipman RD (1994) Performance of Japanese and hybrid larch progenies in Pennsylvania. North J Appl For 11(2):53–57Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Gwenaël Philippe
    • 1
  • Corinne Buret
    • 2
  • Stéphane Matz
    • 1
  • Luc E. Pâques
    • 2
  1. 1.UR EFNO Ecosystèmes Forestiers, centre de Nogent-sur-VernissonIrsteaNogent-sur-VernissonFrance
  2. 2.Centre d’Orléans, Unité d’Amélioration Génétique et Physiologie des Arbres ForestiersINRAArdonFrance

Personalised recommendations