New Forests

, Volume 46, Issue 5–6, pp 795–812 | Cite as

An exponential fertilization dose–response model to promote restoration of the Mediterranean oak Quercus ilex

  • Mercedes Uscola
  • K. Francis Salifu
  • Juan A. Oliet
  • Douglass F. Jacobs


Nursery nitrogen (N) fertilization influences seedling N reserves, morphology, photosynthesis rate and stress tolerance and frequently enhances outplanting performance. Although mineral nutrition is a critical aspect of seedling quality, fertility targets of Mediterranean sclerophylous species have not been thoroughly quantified. We sought to define those fertility targets for seedlings of Quercus ilex, a key species in Mediterranean areas. Nine fertility treatments, ranging from 0 to 200 mg N seedling−1 applied under an exponential regime were tested in a greenhouse dose response trial in which phosphorus (P) and potassium (K) were increased in the same proportion as N (15N:5P:15K). Height and diameter growth were measured weekly, and biomass and nutritional status were analyzed at the end of culture (24 week). Plant growth and nutritional response to increased fertilization followed a curvilinear pattern depicting phases that ranged from deficiency to luxury consumption. Seedling dry mass production was maximized at 125 mg N seedling−1 (sufficiency level). N content and concentration increased with fertilization, reaching a maximum at 200 mg N seedling−1 (luxury consumption). P and K concentrations peaked at 75 and 25 mg N, respectively, suggesting a dilution effect of these nutrients. Root volume increased linearly up to 100 mg N and declined thereafter. The sufficiency level for Q. ilex (125 mg of applied N seedling−1) is notably higher than for other Quercus species from other biomes but intermediate to other Mediterranean Quercus species. No toxicity was observed at the highest treatment rate (200 mg N) suggesting that increased exponential N rates along with greater P and K proportions than those used in our experiment may further maximize nutrient storage.


Quercus ilex Exponential fertilization Growth Luxury uptake Sufficiency level 


  1. Andivia E, Fernández M, Vázquez-Piqué J (2012a) Autumn fertilization of Quercus ilex ssp. ballota (Desf.) Samp. nursery seedlings: effects on morpho-physiology and field performance. Ann For Sci 68:543–553CrossRefGoogle Scholar
  2. Andivia E, Fernández M, Vázquez-Piqué J, Alejano R (2012b) Two provenances of Quercus ilex ssp. ballota (Desf) Samp. nursery seedlings have different response to frost tolerance and autumn fertilization. Eur J For Res 131:1091–1101CrossRefGoogle Scholar
  3. Birge ZKD, Francis Salifu K, Jacobs DF (2006) Modified exponential nitrogen loading to promote morphological quality and nutrient storage of bareroot-cultured Quercus rubra and Quercus alba seedlings. Scand J For Res 21:306–316CrossRefGoogle Scholar
  4. Blanco E, Casado MA, Costa M, Escribano R, García M, Génova M, Gómez A, Gómez F, Moreno JC, Morla C, Regato P, Sainz H (1998) Los bosques Ibéricos. Una interpretación geobotánica. Editorial Planeta S.A, BarcelonaGoogle Scholar
  5. Burdett AN (1979) A nondestructive method for measuring the volume of intact plant parts. Can J For Res 9:120–122CrossRefGoogle Scholar
  6. Castro-Díez P, Villar-Salvador P, Pérez-Rontomé C, Maestro-Martínez M, Montserrat-Martí G (1997) Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees 11:127–134Google Scholar
  7. Cortina J, Vilagrosa A, Trubat R (2013) The role of nutrients for improving seedling quality in drylands. New For 44:719–732CrossRefGoogle Scholar
  8. Cuesta B, Vega J, Villar-Salvador P, Rey-Benayas JM (2010a) Root growth dynamics of Aleppo pine (Pinus halepensis Mill.) seedlings in relation to shoot elongation, plant size and tissue nitrogen concentration. Trees 24:899–908CrossRefGoogle Scholar
  9. Cuesta B, Villar-Salvador P, Puértolas J, Jacobs DF, Rey Benayas JM (2010b) Why do large, nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species. For Ecol Manage 260:71–78CrossRefGoogle Scholar
  10. Del Campo A, Navarro R, Ceacero C (2010) Seedling quality and field performance of commercial stocklots of containerized holm oak (Quercus ilex) in Mediterranean Spain: an approach for establishing a quality standard. New For 39:19–37CrossRefGoogle Scholar
  11. Del Campo AD, Hermoso J, Flors J, Lidón A, Navarro-Cerrillo RM (2011) Nursery location and potassium enrichment in Aleppo pine stock 2. Performance under real and hydrogel-mediated drought conditions. Forestry 84:235–245CrossRefGoogle Scholar
  12. Grossnickle SC (2012) Why seedlings survive: influence of plant attributes. New For 43:711–738CrossRefGoogle Scholar
  13. Haase DL, Rose R (1995) Vector analysis and its use for interpreting plant nutrient shifts in response to silvicultural treatments. For Sci 41:54–66Google Scholar
  14. Heredia-Guerrero N, Oliet JA, Villar-Salvador P, Benito LF, Peñuelas JL (2014) Fertilization regime interacts with fall temperature in the nursery to determine the frost and drought tolerance of the Mediterranean oak Quercus ilex subsp. ballota. For Ecol Manage 331:50–59CrossRefGoogle Scholar
  15. Hernández EI, Vilagrosa A, Luis VC, Llorca M, Chirino E, Vallejo VR (2009) Root hydraulic conductance, gas exchange and leaf water potential in seedlings of Pistacia lentiscus L. and Quercus suber L. grown under different fertilization and light regimes. Environ Exp Bot 67:269–276CrossRefGoogle Scholar
  16. IFN3. Tercer Inventario Forestal Nacional (1997–2007). Ministerio de Agricultura, Alimentación y Medio Ambiente.Google Scholar
  17. Imo M, Timmer VR (1992) Nitrogen uptake of mesquite seedlings at conventional and exponential fertilization schedules. Soil Sci Soc Am J 56:927–934CrossRefGoogle Scholar
  18. Imo M, Timmer R (1997) Vector diagnosis of nutrient dynamics in mesquite. For Sci 43:268–273Google Scholar
  19. Ingestad T, Lund AB (1986) Theory and techniques for steady state mineral nutrition and growth of plants. Scand J For Res 1:439–453Google Scholar
  20. Jacobs DF, Timmer VR (2005) Fertilizer-induced changes in rhizosphere electrical conductivity: relation to forest tree seedling root system growth and function. New For 30:147–166CrossRefGoogle Scholar
  21. MAPA (2006) Forestación de tierras agrícolas. Análisis de su evolución y contribución a la fijación del carbono y al uso racional de la tierra. 374Google Scholar
  22. Miyamoto S, Martinez I, Padilla M, Portillo A, Ornelas D (2004) Landscape plant lists for salt tolerance assessment. Native Plants. Texas Agricultural Experimentation Station, El Paso, USA, p 12Google Scholar
  23. Oliet JA, Puértolas J, Planelles R, Jacobs DF (2013) Nutrient loading of forest tree seedlings to promote stress resistance and field performance: a Mediterranean perspective. New For 44:649–669Google Scholar
  24. Oliet JA, Jacobs DF (2012) Restoring forests: advances in techniques and theory. New For 43:535–541CrossRefGoogle Scholar
  25. Oliet J, Planelles R, Segura ML, Artero F, Jacobs DF (2004) Mineral nutrition and growth of containerized Pinus halepensis seedlings under controlled-release fertilizer. Sci Hortic 103:113–129CrossRefGoogle Scholar
  26. Oliet JA, Tejada M, Salifu KF, Collazos A, Jacobs DF (2009) Performance and nutrient dynamics of holm oak (Quercus ilex L.) seedlings in relation to nursery nutrient loading and post-transplant fertility. Eur J For Res 128:253–263CrossRefGoogle Scholar
  27. Oliet JA, Salazar JM, Villar R, Robredo E, Valladares F (2011) Fall fertilization of holm oak affects N and P dynamics, root growth potential, and post-planting phenology and growth. Ann For Sci 68:647–656CrossRefGoogle Scholar
  28. Pardos M, Royo A, Pardos JA (2005) Growth, nutrient, water relations, and gas exchange in a holm oak plantation in response to irrigation and fertilization. New For 30:75–94CrossRefGoogle Scholar
  29. Pascual S, Olarieta JR, Rodríguez-Ochoa R (2012) Development of Quercus ilex plantations is related to soil phosphorus availability on shallow calcareous soils. New For 43:805–814CrossRefGoogle Scholar
  30. Pemán García J, Navarro Cerrillo RM, Nicolás Peragón JL, Prada Sáez MA, Serrada Hierro R (2014) Producción y manejo de semillas y plantas forestales, Tomo 2. Organismo Autónomo Parques Nacionales Ministerio de Agricultura, Alimentación y Medio Ambiente Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, España, p 820Google Scholar
  31. Peñuelas Rubira J, Ocaña Bueno L (2000) Cultivo de plantas forestales en contenedor, Ministerio de Agricultura, Pesca y Alimentación y Ediciones Mundi-Prensa. Madrid (Spain), p 190Google Scholar
  32. Rey Benayas JM, Camacho-Cruz A (2004) Performance of Quercus ilex saplings planted in abandoned Mediterranean cropland after long-term interruption of their management. For Ecol Manage 194:223–233CrossRefGoogle Scholar
  33. Rodá F, Retana J, Gracia C, Bellot J (1999) Ecology of Mediterranean evergreen oak forest. Serie ecological studies, BerlinGoogle Scholar
  34. Romane F, Terradas J (1992) Quercus ilex L. ecosystems: function, dynamics and management. Springer, BerlinCrossRefGoogle Scholar
  35. Salifu KF, Jacobs DF (2006) Characterizing fertility targets and multi-element interactions in nursery culture of Quercus rubra seedlings. Ann For Sci 63:231–237CrossRefGoogle Scholar
  36. Salifu KF, Timmer VR (2001) Nutrient retranslocation response of seedlings to nitrogen supply. Soil Sci Soc Am J 65:905–913CrossRefGoogle Scholar
  37. Salifu KF, Timmer VR (2003) Optimizing nitrogen loading of Picea mariana seedlings during nursery culture. Can J For Res 33:1287–1294CrossRefGoogle Scholar
  38. Salifu KF, Islam MA, Jacobs DF (2009a) Retranslocation, plant and soil recovery of nitrogen-15 applied to bareroot Black Walnut seedlings. Commun Soil Sci Plant Anal 40:1408–1417Google Scholar
  39. Salifu KF, Jacobs DF, Birge ZKD (2009b) Nursery nitrogen loading improves field performance of bareroot oak seedlings planted on abandoned mine lands. Restor Ecol 17:339–349CrossRefGoogle Scholar
  40. Sanz-Pérez V, Castro-Díez P, Valladares F (2007) Growth versus storage: responses of Mediterranean oak seedlings to changes in nutrient and water availabilities. Ann For Sci 64:201–210CrossRefGoogle Scholar
  41. Sardans J, Peñuelas J (2004) Increasing drought decreases phosphorus availability in an evergreen Mediterranean forest. Plant Soil 267:367–377CrossRefGoogle Scholar
  42. Sardans J, Peñuelas J, Estiarte M (2006a) Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant Soil 289:227–238CrossRefGoogle Scholar
  43. Sardans J, Rodà F, Peñuelas J (2006b) Effects of a nutrient pulse supply on nutrient status of the Mediterranean trees Quercus ilex subsp. ballota and Pinus halepensis on different soils and under different competitive pressure. Trees 20:619–632CrossRefGoogle Scholar
  44. Schmal JL, Jacobs DF, O’Reilly C (2010) Nitrogen budgeting and quality of exponentially fertilized Quercus robur seedlings in Ireland. Eur J For Res 130:557–567CrossRefGoogle Scholar
  45. Siles G, Rey PJ, Alcántara JM, Bastida JM, Herreros JL (2010) Effects of soil enrichment, watering and seedling age on establishment of Mediterranean woody species. Acta Oecol 36:357–364CrossRefGoogle Scholar
  46. Tan W, Hogan GD (1997) Physiological and morphological responses to nitrogen limitation in jack pine seedlings: potential implications for drought tolerance. New For 14:19–31CrossRefGoogle Scholar
  47. Terradas J, Savé R (1992) The influence of summer and winter stress and water relationships on the distribution of Quercus ilex L. Vegetatio 99–100:137–145CrossRefGoogle Scholar
  48. Timmer VR (1991) Interpretation of seedling analysis and visual symptoms. In: van den Driessche R (ed) Mineral nutrition of conifer seedlings. CRC Press, Boca Raton, pp 113–114Google Scholar
  49. Timmer VR (1997) Exponential nutrient loading: a new fertilization technique to improve seedling performance on competitive sites. New For 13:279–299CrossRefGoogle Scholar
  50. Timmer VR, Aidelbaum AS (1996) Manual for exponential nutrient loading of seedlings to improve outplanting performance on competitive forest sites. Nat. Resour. Can., Canadian Forest Service- Sault Ste. Marie, Sault Ste. Marie, ON.NODA/NFP Tech. Rep. TR-25, p 21Google Scholar
  51. Timmer VR, Armstrong G (1987) Diagnosing nutritional status of containerized tree seedlings: comparative plant analyses1. Soil Sci Soc Am J 51:1082CrossRefGoogle Scholar
  52. Trubat R, Cortina J, Vilagrosa A (2011) Nutrient deprivation improves field performance of woody seedlings in a degraded semi-arid shrubland. Ecol Eng 37:1164–1173CrossRefGoogle Scholar
  53. Uscola M, Oliet JA, Villar-Salvador P, Díaz-Pinés E, Jacobs DF (2014) Nitrogen form and concentration interactively affect the performance of two ecologically distinct Mediterranean forest trees. Eur J For Res 133:235–246CrossRefGoogle Scholar
  54. Valdecantos A, Cortina J, Vallejo VR (2006) Nutrient status and field performance of tree seedlings planted in Mediterranean degraded areas. Ann For Sci 63:249–256CrossRefGoogle Scholar
  55. Valladares F, Martinez-Ferri E, Balaguer L, Perez-Corona E, Manrique E, Medioambientales DC (2000) Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy ? New Phytol 148:79–91CrossRefGoogle Scholar
  56. Villar R, Ruiz-Robleto J, Quero J, Poorter H, Valladares F, Marañón T (2004) Tasas de crecimiento en especies leñosas: aspectos funcionales e implicaciones ecológicas. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente, EGRAF, S.A., Madrid, pp 191–227Google Scholar
  57. Villar-Salvador P, Planelles R, Enriquez E, Peñuelas Rubira J (2004a) Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. For Ecol Manage 196:257–266CrossRefGoogle Scholar
  58. Villar-Salvador P, Planelles R, Oliet J, Penuelas-Rubira JL, Jacobs DF, Gonzalez M (2004b) Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery. Tree Physiol 24:1147–1155CrossRefPubMedGoogle Scholar
  59. Villar-Salvador P, Heredia N, Millard P (2010) Remobilization of acorn nitrogen for seedling growth in holm oak (Quercus ilex), cultivated with contrasting nutrient availability. Tree Physiol 30:257–263CrossRefPubMedGoogle Scholar
  60. Villar-Salvador P, Puértolas J, Cuesta B, Peñuelas JL, Uscola M, Heredia-Guerrero N, Rey Benayas JM (2012) Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New For 43:755–770CrossRefGoogle Scholar
  61. Villar-Salvador P, Peñuelas JL, Nicolás-Peragón JL, Benito LF, Domínguez-Lerena S (2013) Is nitrogen fertilization in the nursery a suitable tool for enhancing the performance of Mediterranean oak plantations? New For 44:733–751CrossRefGoogle Scholar
  62. Warncke D (1998) Greenhouse root media. In: Brown JR (ed) Recommended chemical soil test procedures for the north central region. CR publication number 221 (revised), North Missouri Agricultural Experiment Station, Columbia, pp 61–64Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mercedes Uscola
    • 1
  • K. Francis Salifu
    • 1
  • Juan A. Oliet
    • 2
  • Douglass F. Jacobs
    • 1
  1. 1.Hardwood Tree Improvement and Regeneration Center, Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteUSA
  2. 2.Departamento de Sistemas y Recursos NaturalesUniversidad Politécnica de Madrid, E.T.S. Ingenieros de MontesMadridSpain

Personalised recommendations