New Forests

, Volume 46, Issue 5–6, pp 645–668 | Cite as

Restoration of forest resilience: An achievable goal?

  • Adrian C. Newton
  • Elena Cantarello


Although the concept of resilience is increasingly being incorporated into environmental policy and linked to ecological restoration goals, there is considerable uncertainty regarding how resilience should be defined and measured in practice. Here we briefly review some of the definitions of resilience that have been proposed, including those referred to as “ecological” and “engineering” resilience. We also examine evidence for the existence of multiple stable states in forest ecosystems, on which concepts of ecological resilience are based. As evidence for multiple stable states is limited, we suggest that ecological resilience may often have limited value as a goal for forest restoration. We illustrate how engineering resilience can potentially be measured by estimating the rate of forest recovery following disturbance, through analysis of recovery trajectories using meta-analysis and ecological modelling approaches. We also highlight the potential value of resistance as a restoration goal, which can similarly be estimated using such approaches. Based on application of these concepts, we suggest how guidance for restoration practitioners could potentially be developed, to support the practical achievement of both resilience and resistance during forest restoration.


Ecological resilience Ecosystem resilience Adaptive capacity Biodiversity Ecological restoration Multiple stable states Woodland 



This research is funded by NERC via the Biodiversity & Ecosystem Service Sustainability (BESS) programme. Project ref. NE/K01322X/1. The constructive comments of two anonymous referees are gratefully acknowledged.


  1. Abrams MD, Sprugel DG, Dickmann DI (1985) Multiple successional pathways on recently disturbed jack pine sites in michigan. For Ecol Manag 10:31–48. doi: 10.1016/0378-1127(85)90012-X CrossRefGoogle Scholar
  2. Anderies JM, Janssen MA, Walker BH (2002) Grazing management, resilience, and the dynamics of a fire-driven rangeland system. Ecosystems 5:23–44. doi: 10.1007/s10021-001-0053-9 CrossRefGoogle Scholar
  3. Beisner BE, Haydon DT, Cuddington K (2003) Alternative stable states in ecology. Front Ecol Environ 1:376–382. doi: 10.2307/3868190 CrossRefGoogle Scholar
  4. Bonan GB, Pollard D, Thompson SL (1992) Effects of Boreal forest vegetation on global climate. Nature 359:716–718. doi: 10.1038/359716a0 CrossRefGoogle Scholar
  5. Bradshaw AD (1984) Ecological principles and land reclamation practice. Landsc Plan 11:35–48. doi: 10.1016/0304-3924(84)90016-9 CrossRefGoogle Scholar
  6. Brand F (2009) Critical natural capital revisited: ecological resilience and sustainable development. Ecol Econ 68:605–612. doi: 10.1016/j.ecolecon.2008.09.013 CrossRefGoogle Scholar
  7. Brand FS, Jax K (2007) Focusing the meaning(s) of resilience: resilience as a descriptive concept and a boundary object. Ecol Soc 12(1):23.
  8. Brown JH, Valone TJ, Curtin CG (1997) Reorganization of an arid ecosystem in response to recent climate change. Proc Natl Acad Sci USA 94:9729–9733. doi: 10.1073/pnas.94.18.9729 PubMedCentralCrossRefPubMedGoogle Scholar
  9. Brudvig LA (2011) The restoration of biodiversity: where has research been and where does it need to go? Am J Bot 98:549–558. doi: 10.3732/Ajb.1000285 CrossRefPubMedGoogle Scholar
  10. Bullock JM, Aronson J, Newton AC, Pywell RF, Rey-Benayas JM (2011) Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol Evol 26:541–549. doi: 10.1016/j.tree.2011.06.011 CrossRefPubMedGoogle Scholar
  11. Burton P (2013) Exploring complexity in boreal forests. In: Messier C, Puettmann KJ, Coates K (eds) Managing forests as complex adaptive systems, Building resilience to the challenge of global change. Earthscan/Routledge, London, pp 79–109Google Scholar
  12. Busby PE, Canham CD (2011) An exotic insect and pathogen disease complex reduces aboveground tree biomass in temperate forests of eastern North America. Can J Forest Res 41:401–411. doi: 10.1139/X10-213 CrossRefGoogle Scholar
  13. Cantarello E, Newton AC, Hill RA, Tejedor-Garavito N, Williams-Linera G, López-Barrera F, Manson RH, Golicher DJ (2011) Simulating the potential for ecological restoration of dryland forests in Mexico under different disturbance regimes. Ecol Model 222:1112–1128. doi: 10.1016/j.ecolmodel.2010.12.019 CrossRefGoogle Scholar
  14. Cantarello E, Lovegrove A, Orozumbekov A, Birch J, Brouwers N, Newton AC (2014) Human impacts on forest biodiversity in protected walnut-fruit forests in Kyrgyzstan. J Sustain For 33:454–481. doi: 10.1080/10549811.2014.901918 CrossRefGoogle Scholar
  15. Carpenter S (2003) Regime shifts in lake ecosystems. Ecology Institute, OldendorfGoogle Scholar
  16. Carpenter S, Walker B, Anderies JM, Abel N (2001) From metaphor to measurement: resilience of what to what? Ecosystems 4:765–781. doi: 10.1007/s10021-001-0045-9 CrossRefGoogle Scholar
  17. Carpenter SR, Westley F, Turner MG (2005) Surrogates for resilience of social-ecological systems. Ecosystems 8:941–944. doi: 10.1007/s10021-005-0170-y CrossRefGoogle Scholar
  18. Chai SL, Healey JR, Tanner EVJ (2012) Evaluation of forest recovery over time and space using permanent plots monitored over 30 years in a jamaican montane rain forest. PLoS ONE 7:e48859. doi: 10.1371/journal.pone.0048859 PubMedCentralCrossRefPubMedGoogle Scholar
  19. Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances perspect. Plant Ecol 6:51–71. doi: 10.1078/1433-8319-00042 Google Scholar
  20. Choi YD, Temperton VM, Allen EB, Grootjans AP, Halassy M, Hobbs RJ, Naeth MA, Torok K (2008) Ecological restoration for future sustainability in a changing environment. Ecoscience 15:53–64. doi: 10.2980/1195-6860(2008)15[53:ERFFSI]2.0.CO;2
  21. Clewell AF, Aronson J (2007) Ecological restoration: Principles, values, and structure of an emerging profession. Island Press, Washington DCGoogle Scholar
  22. Connell JH (1978) Diversity in tropical rain forests and coral reefs—high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199:1302–1310. doi: 10.1126/science.199.4335.1302 CrossRefPubMedGoogle Scholar
  23. Coomes DA, Allen RB, Forsyth DM, Lee WG (2003) Factors preventing the recovery of New Zealand forests following control of invasive deer. Conserv Biol 17:450–459. doi: 10.1046/j.1523-1739.2003.15099.x CrossRefGoogle Scholar
  24. Cornett M, White M (2013) Forest restoration in a changing world. In: Messier C, Puettmann KJ, Coates KD (eds) Managing forests as complex adaptive systems. Building resilience to the challenge of global change. Earthscan/Routledge, London, pp 113–132Google Scholar
  25. Côté IM, Darling ES (2010) Rethinking ecosystem resilience in the face of climate change. PLoS Biol 8:e1000438. doi: 10.1371/journal.pbio.1000438 PubMedCentralCrossRefPubMedGoogle Scholar
  26. Cumming GS, Barnes G, Perz S, Schmink M, Sieving KE, Southworth J, Binford M, Holt RD, Stickler C, Van Holt T (2005) An exploratory framework for the empirical measurement of resilience. Ecosystems 8:975–987. doi: 10.1007/s10021-005-0129-z CrossRefGoogle Scholar
  27. Da Sternberg LSL (2001) Savanna-forest hysteresis in the tropics. Glob Ecol Biogeogr 10:369–378. doi: 10.1046/j.1466-822X.2001.00243.x CrossRefGoogle Scholar
  28. Danell K, Bergstrom R, Edenius L, Ericsson G (2003) Ungulates as drivers of tree population dynamics at module and genet levels. For Ecol Manag 181:67–76. doi: 10.1016/S0378-1127(03)00116-6 CrossRefGoogle Scholar
  29. Davidson C (2000) Economic growth and the environment: alternatives to the limits paradigm. Bioscience 50:433–440. doi: 10.1641/0006-3568(2000)050[0433:Egatea]2.0.Co;2
  30. Davis MA (2000) “Restoration”—a misnomer? Science 287:1203CrossRefPubMedGoogle Scholar
  31. Donohue I, Petchey OL, Montoya JM, Jackson AL, McNally L, Viana M, Healy K, Lurgi M, O’Connor NE, Emmerson MC (2013) On the dimensionality of ecological stability. Ecol Lett 16:421–429. doi: 10.1111/Ele.12086 CrossRefPubMedGoogle Scholar
  32. Dublin HT, Sinclair ARE, Mcglade J (1990) Elephants and fire as causes of multiple stable states in the serengeti mara woodlands. J Anim Ecol 59:1147–1164. doi: 10.2307/5037 CrossRefGoogle Scholar
  33. EPA (2012) U.S. Environmental protection agency Climate change adaption plan. Public review draft. Accessed 5 May 2015
  34. Folke C (2006) Resilience: the emergence of a perspective for social-ecological systems analyses. Glob Environ Change 16:253–267. doi: 10.1016/j.gloenvcha.2006.04.002 CrossRefGoogle Scholar
  35. Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–581. doi: 10.1146/annurev.ecolsys.35.021103.105711 CrossRefGoogle Scholar
  36. Folke C, Carpenter SR, Walker B, Scheffer M, Chapin T, Rockstrom J (2010a) Resilience thinking: integrating resilience, adaptability and transformability. Ecol Soc 15(4):20 (online).
  37. Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling C (2010b) Regime shifts, resilience and biodiversity in ecosystem management. In: Gunderson L, Allen C, Holling C (eds) Foundations of ecological resilience. Island Press, Washington, pp 119–150Google Scholar
  38. Fraterrigo JM, Rusak JA (2008) Disturbance-driven changes in the variability of ecological patterns and processes. Ecol Lett 11:756–770. doi: 10.1111/j.1461-0248.2008.01191.x CrossRefPubMedGoogle Scholar
  39. Frelich LE, Reich PB (1999) Neighborhood effects, disturbance severity, and community stability in forests. Ecosystems 2:151–166. doi: 10.1007/s100219900066 CrossRefGoogle Scholar
  40. Grimm V, Calabrese JM (2011) What is resilience? A short introduction. In: Deffuant G, Gilbert N (eds) Viability and resilience of complex systems. Concepts, methods and case studies from ecology and society. Kluwer Academic Publishers, Dordrecht, pp 3–16CrossRefGoogle Scholar
  41. Grimm V, Wissel C (1997) Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion. Oecologia 109:323–334. doi: 10.1007/s004420050090 CrossRefGoogle Scholar
  42. Gunderson LH (2000) Ecological resilience—in theory and application. Annu Rev Ecol Syst 31:425–439. doi: 10.1146/annurev.ecolsys.31.1.425 CrossRefGoogle Scholar
  43. Gunderson L, Walters C (2002) Resilience in wet landscapes of southern Florida. In: Gunderson L, Ritchard L (eds) Resilience and the behavior of large-scale systems. Island Press, Washington, pp 165–182Google Scholar
  44. Haeussler S, Canham C, Coates K (2013) Complexity in temperate forest dynamics. In: Messier C, Puettmann KJ, Coates K (eds) Managing forests as complex adaptive systems. Building resilience to the challenge of global change. Earthscan/Routledge, London, pp 60–78Google Scholar
  45. Higgins PAT, Mastrandrea MD, Schneider SH (2002) Dynamics of climate and ecosystem coupling: abrupt changes and multiple equilibria. Philos Trans Roy Soc B 357:647–655. doi: 10.1098/rstb.2001.1043 CrossRefGoogle Scholar
  46. Hirota M, Holmgren M, Van Nes EH, Scheffer M (2011) Global resilience of tropical forest and savanna to critical transitions. Science 334:232–235. doi: 10.1126/science.1210657 CrossRefPubMedGoogle Scholar
  47. HM Government (2011) The natural choice: securing the value of nature. The Stationery Office, LondonGoogle Scholar
  48. Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: implications for conservation and restoration. Trends Ecol Evol 24:599–605. doi: 10.1016/j.tree.2009.05.012 CrossRefPubMedGoogle Scholar
  49. Hobbs RJ, Hallett LM, Ehrlich PR, Mooney HA (2011) Intervention ecology: applying ecological science in the twenty-first century. Bioscience 61:442–450. doi: 10.1525/bio.2011.61.6.6 CrossRefGoogle Scholar
  50. Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23. doi: 10.1146/ CrossRefGoogle Scholar
  51. Holling C (1978) The spruce-budworm/forest-management problem. In: Holling C (ed) Adaptive environmental assessment and management. international series on applied systems analysis. Wiley, New York, pp 143–182Google Scholar
  52. Holling C (1996) Engineering resilience versus ecological resilience. In: Schulze PC (ed) Engineering within ecological constraints. National Academy Press, Washington, DC, pp 31–43Google Scholar
  53. Holling C, Gunderson L (2002) Resilience and adaptive cycles. In: Gunderson LH, Holling CS (eds) Panarchy: understanding transformations in human and natural systems. Island Press, Washington, DC, pp 25–62Google Scholar
  54. IPCC (2014) Summary for Policymakers. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds.) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–32Google Scholar
  55. Keith SA, Newton AC, Herbert RJH, Morecroft MD, Bealey CE (2009) Non-analogous community formation in response to climate change. J Nat Conserv 17:228–235. doi: 10.1016/j.jnc.2009.04.003 CrossRefGoogle Scholar
  56. Lawton J, Brotherton P, Brown V, Elphick C, Fitter A, Forshaw J, Haddow R, Hilborne S, Leafe R, Mace G, Southgate M, Sutherland W, Tew T, Varley J, Wynne G (2010) Making space for nature: a review of england’s wildlife sites and ecological network. Department for Food, Agriculture and Rural Affairs, LondonGoogle Scholar
  57. Levin SA (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1:431–436. doi: 10.1007/s100219900037 CrossRefGoogle Scholar
  58. Lindenmayer DB, Hobbs RJ, Likens GE, Krebs CJ, Banks SC (2011) Newly discovered landscape traps produce regime shifts in wet forests. Proc Natl Acad Sci USA 108:15887–15891. doi: 10.1073/pnas.1110245108 PubMedCentralCrossRefPubMedGoogle Scholar
  59. Martin S, Deffuant G, Calabrese J (2011) Defining resilience mathematically: from attractors to viability. In: Deffuant G, Gilbert N (eds) Viability and resilience of complex systems. Concepts, methods and case studies from ecology and society. Kluwer Academic Publishers, Dordrecht, pp 17–48Google Scholar
  60. Martin PA, Newton AC, Bullock JM (2013) Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc Roy Soc B-Biol Sci. doi: 10.1098/Rspb.2013.2236 Google Scholar
  61. Matthews JW (2014) Group-based modeling of ecological trajectories in restored wetlands. Ecol Appl. doi: 10.1890/14-0390.1 Google Scholar
  62. Matthews JW, Spyreas G, Endress AG (2009) Trajectories of vegetation-based indicators used to assess wetland restoration progress. Ecol Appl 19:2093–2107. doi: 10.1890/08-1371.1 CrossRefPubMedGoogle Scholar
  63. May RM (1974) Stability and complexity in model ecosystems, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  64. Messier C, Puettmann KJ, Coates KD (eds) (2013) Managing forests as complex adaptive systems. Building resilience to the challenge of global change. Earthscan/Routledge, LondonGoogle Scholar
  65. Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151. doi: 10.1890/06-1715.1 CrossRefPubMedGoogle Scholar
  66. Mladenoff DJ (2004) LANDIS and forest landscape models. Ecol Model 180:7–19. doi: 10.1016/j.ecolmodel.2004.03.016 CrossRefGoogle Scholar
  67. Natural Resource Management Ministerial Council (2010) Australia’s Biodiversity Conservation Strategy 2010–2030. Australian Government, Department of Sustainability, Environment, Water, Population and Communities, CanberraGoogle Scholar
  68. Newton AC (2011) Social-ecological resilience and biodiversity conservation in a 900-year-old protected area. Ecol Soc 16(4): 13 [online] doi: 10.5751/es-04308-160413
  69. Newton AC, Echeverría C (2014) Analysis of anthropogenic impacts on forest biodiversity as a contribution to empirical theory. In: Coomes DA, Burslem DFRP, Simonson WD (eds) Forests and global change. Cambridge University Press, Cambridge, pp 417–446. doi: 10.1017/CBO9781107323506.019 Google Scholar
  70. Newton AC, Tejedor N (2011) Principles and practice of forest landscape restoration: case studies from the drylands of latin america. IUCN, GlandGoogle Scholar
  71. Newton AC, Echeverría C, Cantarello E, Bolados G (2011) Projecting impacts of human disturbances to inform conservation planning and management in a dryland forest landscape. Biol Conserv 144:1949–1960. doi: 10.1016/j.biocon.2011.03.026 CrossRefGoogle Scholar
  72. Newton AC, Cantarello E, Tejedor N, Myers G (2013) Dynamics and conservation management of a wooded landscape under high herbivore pressure. Int J Biodivers 2013:15. doi: 10.1155/2013/273948 CrossRefGoogle Scholar
  73. Nowacki GJ, Abrams MD (2008) The demise of fire and “Mesophication” of forests in the eastern United States. Bioscience 58:123–138. doi: 10.1641/B580207 CrossRefGoogle Scholar
  74. O‘Neill R (1998) Recovery in complex ecosystems. J Aquat Ecosyst Stress Recovery 6:181–187. doi: 10.1023/A:1009996332614 CrossRefGoogle Scholar
  75. Paine RT, Tegner MJ, Johnson EA (1998) Compounded perturbations yield ecological surprises. Ecosystems 1:535–545. doi: 10.1007/s100219900049 CrossRefGoogle Scholar
  76. Palmer M, Falk D, Zedler J (2006) Ecological theory and restoration ecology. In: Falk D, Palmer M, Zedler J (eds) Foundations of restoration ecology. Island Press, Washington, pp 1–10Google Scholar
  77. Peters RH (1991) A critique for ecology. Cambridge University Press, CambridgeGoogle Scholar
  78. Peterson CH (1984) Does a rigorous criterion for environmental identity preclude the existence of multiple stable points? Am Nat 124:127–133. doi: 10.1086/284256 CrossRefGoogle Scholar
  79. Peterson G (2002) Forest dynamics in the Southeastern United States: managing multiple stable states. In: Gunderson L, Pritchard L (eds) Resilience and the behavior of large-scale ecosystems. Island Press, Washington, DC, pp 227–246Google Scholar
  80. Petraitis PS (2013) Multiple stable states in natural ecosystems. Oxford University Press, OxfordCrossRefGoogle Scholar
  81. Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326. doi: 10.1038/307321a0 CrossRefGoogle Scholar
  82. Pimm SL (1991) The balance of nature? Ecological issues in the conservation of species and communities. University of Chicago Press, ChicagoGoogle Scholar
  83. Pimm SL, Lawton JH (1977) Number of trophic levels in ecological communities. Nature 268:329–331. doi: 10.1038/268329a0 CrossRefGoogle Scholar
  84. Resilience Alliance and Santa Fe Institute (2004) Thresholds and alternate states in ecological and social-ecological systems. (online) Accessed 6 May 2015
  85. Rey-Benayas JM, Newton AC, Diaz A, Bullock JM (2009) Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325:1121–1124. doi: 10.1126/science.1172460 CrossRefPubMedGoogle Scholar
  86. Richardson PJ, Lundholm JT, Larson DW (2010) Natural analogues of degraded ecosystems enhance conservation and reconstruction in extreme environments. Ecol Appl 20:728–740. doi: 10.1890/08-1092.1 CrossRefPubMedGoogle Scholar
  87. Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656. doi: 10.1016/j.tree.2003.09.002 CrossRefGoogle Scholar
  88. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596. doi: 10.1038/35098000 CrossRefPubMedGoogle Scholar
  89. Scheffer M, Westley F, Broack W, Holmgren M (2002) Dynamic interaction of societies and ecosystems—linking theories from ecology, economy and sociology. In: Gunderson L, Holling C (eds) Panarchy: understanding transformations in human and natural systems. Island Press, Washington, DC, pp 195–239Google Scholar
  90. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59. doi: 10.1038/Nature08227 CrossRefPubMedGoogle Scholar
  91. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput IA, Levin SA, van Nes EH, Pascual M, Vandermeer J (2012) Anticipating critical transitions. Science 338:344–348. doi: 10.1126/science.1225244 CrossRefPubMedGoogle Scholar
  92. Scheller RM, Domingo JB, Sturtevant BR, Williams JS, Rudy A, Gustafson EJ, Mladenoff DJ (2007) Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecol Model 201:409–419. doi: 10.1016/j.ecolmodel.2006.10.009 CrossRefGoogle Scholar
  93. Schröder A, Persson L, De Roos AM (2005) Direct experimental evidence for alternative stable states: a review. Oikos 110:3–19. doi: 10.1111/j.0030-1299.2005.13962.x CrossRefGoogle Scholar
  94. Seastedt TR, Hobbs RJ, Suding KN (2008) Management of novel ecosystems: are novel approaches required? Front Ecol Environ 6:547–553. doi: 10.1890/070046 CrossRefGoogle Scholar
  95. Smit B, Wandel J (2006) Adaptation, adaptive capacity and vulnerability. Glob Environ Chang 16:282–292. doi: 10.1016/j.gloenvcha.2006.03.008 CrossRefGoogle Scholar
  96. Standish RJ, Hobbs RJ, Mayfield MM, Bestelmeyer BT, Suding KN, Battaglia LL, Eviner V, Hawkes CV, Temperton VM, Cramer VA, Harris JA, Funk JL, Thomas PA (2014) Resilience in ecology: abstraction, distraction, or where the action is? Biol Conserv 177:43–51. doi: 10.1016/j.biocon.2014.06.008 CrossRefGoogle Scholar
  97. Staver AC, Archibald S, Levin SA (2011a) The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–232. doi: 10.1126/science.1210465 CrossRefPubMedGoogle Scholar
  98. Staver AC, Archibald S, Levin SA (2011b) Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92:1063–1072CrossRefPubMedGoogle Scholar
  99. Suding KN (2011) Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu Rev Ecol, Evol, Syst 42:465–487. doi: 10.1146/annurev-ecolsys-102710-145115 CrossRefGoogle Scholar
  100. Suding K, Gross K (2006) The dynamic nature of ecological systems: multiple states and restoration trajectories. In: Falk D, Palmer M, Zedler J (eds) Foundations of restoration ecology. Island Press, Washington, pp 190–209Google Scholar
  101. Sutherland WJ, Pullin AS, Dolman PM, Knight TM (2004) The need for evidence-based conservation. Trends Ecol Evol 19:305–308. doi: 10.1016/j.tree.2004.03.018 CrossRefPubMedGoogle Scholar
  102. Thompson I, Mackey B, McNulty S, Mosseler A (2009) Forest resilience, biodiversity, and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Technical series no. 43. Secretariat of the convention on biological diversity, MontrealGoogle Scholar
  103. Thompson ID, Guariguata MR, Okabe K, Bahamondez C, Nasi R, Heymell V, Sabogal C (2013) An operational framework for defining and monitoring forest degradation. Ecol Soc 18:20. Google Scholar
  104. Trenbath B, Conway G, Craig I (1989) Threats to sustainability in intensified agricultural systems: analysis and implications for management. In: Gliessman S (ed) Agroecology: researching the ecological basis for sustainable agriculture. Springer, Berlin, pp 337–365Google Scholar
  105. Turner BL, Kasperson RE, Matson PA, McCarthy JJ, Corell RW, Christensen L, Eckley N, Kasperson JX, Luers A, Martello ML, Polsky C, Pulsipher A, Schiller A (2003a) A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci USA 100:8074–8079. doi: 10.1073/pnas.1231335100 PubMedCentralCrossRefPubMedGoogle Scholar
  106. Turner MG, Collins SL, Lugo AE, Magnuson JJ, Rupp TS, Swanson FJ (2003b) Disturbance dynamics and ecological response: the contribution of long-term ecological research. Bioscience 53:46–56. doi: 10.1641/0006-3568(2003)053[0046:Ddaert]2.0.Co;2
  107. USFS (2010) Chapter 2020, Ecological restoration and resilience, interim directive 2020–2010-1. In: Forest service Manual 2000, National Forest Research Management
  108. Valone TJ, Meyer M, Brown JH, Chew RM (2002) Timescale of perennial grass recovery in desertified arid grasslands following livestock removal. Conserv Biol 16:995–1002. doi: 10.1046/j.1523-1739.2002.01045.x CrossRefGoogle Scholar
  109. Vandermeer J, de la Cerda IG, Perfecto I, Boucher D, Ruiz J, Kaufmann A (2004) Multiple basins of attraction in a tropical forest: evidence for nonequilibrium community structure. Ecology 85:575–579. doi: 10.1890/02-3140 CrossRefGoogle Scholar
  110. Walker B, Hollin CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social-ecological systems. Ecol Soc 9(2):5.
  111. Walker B, Gunderson L, Kinzig A, Folke C, Carpenter S, Schultz L (2006) A handful of heuristics and some propositions for understanding resilience in social-ecological systems. Ecol Soc 11(1):13.
  112. Warman L, Moles AT (2009) Alternative stable states in Australia’s wet tropics: a theoretical framework for the field data and a field-case for the theory. Landsc Ecol 24:1–13. doi: 10.1007/s10980-008-9285-9 CrossRefGoogle Scholar
  113. Webb CT (2007) What is the role of ecology in understanding ecosystem resilience? Bioscience 57:470–471. doi: 10.1641/B570602 CrossRefGoogle Scholar
  114. Westoby M, Walker B, Noy-Meir I (1989) Opportunistic management for rangelands not at equilibrium. J Range Manag 42:266–274CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Centre for Conservation Ecology and Environmental Science, Faculty of Science and TechnologyBournemouth UniversityPooleUK

Personalised recommendations