Skip to main content

Advertisement

Log in

Pine somatic embryogenesis: analyses of seed tissue and medium to improve protocol development

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

The shift from vegetative to embryogenic growth requires tissue to enter a radically different program of development and can be studied in vitro through the development of somatic embryos. From an applied perspective somatic embryogenesis (SE) is expected to play an important role in increasing productivity, sustainability, and uniformity of future forests. For commercial use, SE technology must work with a variety of genetically diverse trees. Since the first reports of SE in Picea abies and Larix decidua in 1985, many different coniferous species have shown the ability to produce embryogenic tissue. However, initiation frequency is often low, many desired seed sources are recalcitrant, and culture survival is often poor, raising costs of somatic seedlings produced from successful genotypes. A number of tools are now available to improve embryogenic tissue initiation and somatic embryo development in vitro that have resulted from analytical studies of seed tissues, the seed environment and gene expression in megagametophyte, zygotic embryos and somatic embryos. Benefits have occurred from medium supplementation with hormones, plant growth regulators, hormone inhibitors and polyamines. Somatic embryo growth has been enhanced with medium supplementation of nutritional components including specific sugar types, vitamins, organic acids, and redox potential modifiers. Control of environmental factors including, water potential, pH, adsorption of medium components by activated carbon and liquid versus gelled medium have also led to SE protocol improvements. The use of analytical studies to duplicate the seed environment in vitro is improving protocol development resulting in increased initiation, improved yields and higher-quality somatic embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Aal ESM, Hucl P, Sosulski FW, Graf R, Gillott C, Pietrzak L (2009) Screening spring wheat for midge resistance in relation to ferulic acid content. J Agric Food Chem 49:3559–3566

    Google Scholar 

  • Abdullahi BA, Huang P, Bao D, Meng X, Jiang B, Zhu J, Shen H, Yang Y (2004) Effects of citric acid on soybean seedling growth under aluminum stress. J Plant Nutr 27:367–375

    CAS  Google Scholar 

  • Aijaz A, Jain S, Haiharan AG (2011) Effect of elicitation on the production of phyto-constituents through plant tissue culture technique—a review. Int J Drug Dis Herbal Res 1:84–90

    Google Scholar 

  • Aitken-Christie J, Parkes BD (1996) Improved embryogenesis process for initiation and maturation. International application under the patent cooperation treaty (PCT). WO 96/37096, international publication date: 28 November 1996

  • Astarita LV, Floh EIS, Handro W (2003) Free amino acid, protein and water content changes associated with seed development in Araucaria angustifolia. Biologia Plant 47:53–59

    CAS  Google Scholar 

  • Attree SM, Fowke LC (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell, Tissue Organ Cult 35:1–35

    CAS  Google Scholar 

  • Auboiron E, Darron MP, Michaux-Ferriere N (1990) Influence of atmospheric gases, particularly ethylene, on somatic embryogenesis of Hevea brasiliensis. Plant Cell, Tissue Organ Cult 21:31–37

    CAS  Google Scholar 

  • Bajguz A (2007) Metabolism of brassinosteroids in plants. Plant Physiol Biochem 45:95–107

    CAS  PubMed  Google Scholar 

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochem. 62:1027–1046

    CAS  Google Scholar 

  • Becwar MR, Krueger SA (2004) Recovering cryopreserved embryogenic cultures. US Patent 6,682,931, January 27, 2004

  • Belmonte MF, Stasolla C (2009) Altered HBK3 expression affects glutathione and ascorbate metabolism during the early phases of Norway spruce (Picea abies) somatic embryogenesis. Plant Physiol Biochem 47:904–911

    CAS  PubMed  Google Scholar 

  • Belmonte MF, Macey J, Yeung EC, Stasolla C (2005) The effect of osmoticum on ascorbate and glutathione metabolism during white spruce (Picea glauca) somatic embryo development. Plant Physiol Biochem 43:337–346

    CAS  PubMed  Google Scholar 

  • Beyer EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268–271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biddington NL (1992) The influence of ethylene in plant tissue culture. Plant Growth Regul 11:173–187

    CAS  Google Scholar 

  • Bourgin JP, Nitsch JP (1967) Obtention de Nicotiana haploids a partir d’etamines cultivees in vitro. Ann Physiol Veg 9:377–382

    Google Scholar 

  • Bradford KJ (1994) Water stress and the water relations of seed development: a critical review. Crop Sci 34:1–11

    Google Scholar 

  • Brosa D (1999) Biological effects of brassinosteroids. Crit Rev Biochem Mol Biol 34:339–358

    CAS  PubMed  Google Scholar 

  • Businge E, Brackmann K, Moritz T, Egertsdotter U (2012) Metabolite profiling reveals clear metabolic changes during somatic embryo development of Norway spruce (Picea abies). Tree Physiol 32:232–244

    CAS  PubMed  Google Scholar 

  • Cairney J, Pullman GS (2007) The cellular and molecular biology of conifer embryogenesis. New Phytol 176:511–536

    CAS  PubMed  Google Scholar 

  • Cairney J, Xu N, Pullman GS, Ciavatta VT, Johns B (1999) Natural and somatic embryo development in loblolly pine: gene expression studies using differential display and cDNA arrays. Appl Biochem Biotechnol 77–79:5–17

    Google Scholar 

  • Cairney J, Xu N, MacKay J, Pullman G (2000) Transcript profiling: a tool to assess the development of conifer embryos. In Vitro Cell Dev Biol Plant 36:155–162

    CAS  Google Scholar 

  • Cairney J, Zheng L, Cowels A, Hsiao J, Zismann V, Liu J, Ouyang S, Thibaud-Nissen F, Hamilton J, Childs K, Pullman GS, Zhang Y, Oh T, Buell R (2006) Expressed sequence tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis. Plant Mol Biol 62:485–501

    PubMed  Google Scholar 

  • Carman JG, Reese G, Fuller RJ, Ghermay J, Timmis R (2005) Nutrient and hormone levels in Douglas-fir corrosion cavities, megagametophytes, and embryos during embryony. Can J For Res 35:2447–2456

    CAS  Google Scholar 

  • Carrier DJ, Kendall EJ, Bock CA, Cunningham JE, Dunstan DI (1999) Water content, lipid deposition, and (+)-abscisic acid content in developing white spruce seeds. J Exp Bot 50:1359–1364

    CAS  Google Scholar 

  • Chalupa V (1985) Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst. Commun Inst For Chech 14:57–63

    Google Scholar 

  • Chee PP (1996) Plant regeneration from somatic embryos of Taxus brevifolia. Plant Cell Rep 16:184–187

    CAS  PubMed  Google Scholar 

  • Chung W, Pedersen H, Chin CK (1992) Enhanced somatic embryo production by conditioned media in cell suspension cultures of Dacus carota. Biotechnol Lett 14:837–840

    CAS  Google Scholar 

  • Clouse SD (2001) Brassinosteroids. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD. http://www.aspb.org/publications/arabidopsis/

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    CAS  PubMed  Google Scholar 

  • Datta M, Jha S (2008) Plant regeneration through somatic embryogenesis in Taxus wallichiana. J Plant Biochem Biotechnol 17:37–44

    CAS  Google Scholar 

  • DeSilva V, Bostwick D, Burns KL, Oldham DC, Skryabina A, Sullards MC, Wu D, Zhang Y, May SW, Pullman GS (2008) Isolation and characterization of a molecule stimulatory to growth of early-stage somatic embryos from early-stage female gametophyte tissue of loblolly pine. Plant Cell Rep 27:633–646

    Google Scholar 

  • Dodds JH, Roberts LW (1995) Experiments in plant tissue culture, 3rd edn. Cambridge University Press, London, p 45

    Google Scholar 

  • Dogra PD (1967) Seed sterility and disturbances in embryogeny in conifers with particular reference to seed testing and tree breeding in Pinaceae. Studia Forestalia Suecica 45:5–97

    Google Scholar 

  • Domon JM, Meyer Y, Faye L, David A, David H (1994) Extracellular (glycol) proteins in embryogenic and non-embryogenic cell lines of Caribbean pine. Comparison between phenotypes of stage one somatic embryos. Plant Physiol Biochem 32:137–147

    CAS  Google Scholar 

  • Dorman KW (1976) Loblolly pine. In: The genetics and breeding of southern pines, Agriculture Handbook No. 471, U.S. Department of Agriculture Forest Service, p 407 (Chapter 8)

  • Dowlatabadi R, Weljie AM, Thorp TA, Yeung EC, Vogel HJ (2009) Metabolic footprinting study of white spruce somatic embryogenesis using NMR spectroscopy. Plant Physiol Biochem 47:343–350

    CAS  PubMed  Google Scholar 

  • Durzan D (2012) Interpolated apomictic somatic embryogenesis, androsporogenesis, asexual heterospory, mitosporogenesis and genomic silencing in a gymnosperm artificial sporangium. Proceedings of the IUFRO Working Party 2.09.02 conference “Integrating vegetative propagation, biotechnologies and genetic improvement for tree production and sustainable forest management” June 25–28, 2012. Brno, Czech Republic pp 3–36

  • Ebert A, Taylor HF (1990) Assessment of the changes of 2,4-dichlorophenoxyacetic acid concentrations in plant tissue culture media in the presence of activated charcoal. Plant Cell, Tissue Organ Cult 20:165–172

    CAS  Google Scholar 

  • Ebert A, Taylor F, Blake J (1993) Changes of 6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid concentrations in plant tissue culture media in the presence of activated charcoal. Plant Cell, Tissue Organ Cult 33:157–162

    CAS  Google Scholar 

  • Fan TW, Lane AN, Shenker M, Bartley JP, Crowley D, Higashi RM (2001) Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochem 57:209–221

    CAS  Google Scholar 

  • Fehr A (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell, Tissue Organ Cult 74:201–228

    Google Scholar 

  • Gemperlová L, Fischerová L, Cvikrová M, Malá J, Vondráková Z, Martincová O, Vágner M (2009) Polyamine profiles and biosynthesis in somatic embryo development and comparison of germinating somatic and zygotic embryos of Norway spruce. Tree Physiol 29:1287–1298

    PubMed  Google Scholar 

  • Gifford EM, Foster AS (1989) Morphology and evolution of vascular plants, 3rd edn. WH Freeman, New York, NY

    Google Scholar 

  • Gupta PK, Grob JA (1995) Somatic embryogenesis in conifers. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 1. Kluwer, Dordrecht, pp 81–98

    Google Scholar 

  • Gupta PK, Holmstrom D (2005) Double staining technology for distinguishing embryogenic cultures. In: Mohan JS, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Netherlands, pp 573–575

    Google Scholar 

  • Gupta PK, Pullman GS (1991) Method for reproducing coniferous plants by somatic embryogenesis using abscisic acid and osmotic potential variation. US Patent 5036007, 30 July 1991

    Google Scholar 

  • Hackman I, von Arnold S (1985) Plantlet regeneration through somatic embryogenesis in Picea abies (Norway spruce). J Plant Physiol 121:149–158

    Google Scholar 

  • Haggman H, Vuosku J, Sarjala T, Jokela A, Niemi K (2005) Somatic embryogenesis of pine species: from functional genomics to plantation forestry. In: Mujib A, Samaj J (eds) Plant cell monograph, vol 2. Springer, Berlin, pp 119–140

    Google Scholar 

  • Handley L III (1997) Method for regeneration of coniferous plants by somatic embryogenesis in culture media containing abscisic acid. U.S. Patent 5,677,185. October 14, 1997

  • Handley L III (1999) Method for regeneration of coniferous plants by somatic embryogenesis in culture media containing abscisic acid. U.S. Patent 5,856,191. January 5, 1999

  • Iraqui D, Tremblay FM (2001) Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J Exp Bot 52:2301–2311

    Google Scholar 

  • Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–100

    CAS  Google Scholar 

  • Jimenez VM, Thomas C (2005) Participation of plant hormones in determination and progression of somatic embryogenesis. Plant Cell Monogr 2:103–118

    Google Scholar 

  • Kakkar RK, Sawhney VK (2002) Polyamine research in plants—a changing perspective. Physiol Plant 116:281–292

    CAS  Google Scholar 

  • Kao KN, Michayluk MR (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126:105–110

    CAS  PubMed  Google Scholar 

  • Kapik RH, Dinus RJ, Dean JF (1995) Abscisic acid and zygotic embryogenesis in Pinus taeda. Tree Physiol 15:405–409

    Google Scholar 

  • Klimaszewska K, Smith DR (1997) Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiol Plant 100:949–957

    CAS  Google Scholar 

  • Klimaszewska K, Bernier-Cardou M, Cyr DR, Sutton BCS (2000) Influence of gelling agents on culture media gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L. In Vitro Cell Dev Biol Plant 36:279–286

    CAS  Google Scholar 

  • Klimaszewska K, Trontin JF, Becwar MR, Devillard C, Park YS, Lelu-Walter MA (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree For Sci Biotechnol 1:11–25

    Google Scholar 

  • Kong LS, Yeung EC (1994) Effects of ethylene and ethylene inhibitors on white spruce somatic embryo maturation. Plant Sci 104:71–80

    CAS  Google Scholar 

  • Kong L, Yeung E (1995) Effects of silver nitrate and polyethylene glycol on white spruce (Picea glauca) somatic embryo development: enhancing cotyledonary embryo formation and endogenous ABA content. Physiol Plant 93:298–304

    CAS  Google Scholar 

  • Kong L, Attree SM, Fowke LC (1997) Changes in endogenous hormone levels in developing seeds, zygotic embryos and megagametophytes in Picea glauca. Physiol Plant 101:23–30

    CAS  Google Scholar 

  • Kumar PP, Richard WJI, Thorpe TA (1989) Ethylene and carbon dioxide accumulation, and growth of cell suspension cultures of Picea glauca (white spruce). J Plant Physiol 135:592–596

    Google Scholar 

  • Kvaalen H (1994) Ethylene synthesis and growth in embryogenic tissue of Norway spruce: effects of oxygen, 1-aminocyclopropane-1-carboxylic acid, benzyladenine and 2,4-dichlorophenoxyacetic acid. Physiol Plant 92:109–117

    CAS  Google Scholar 

  • Kvaalen H, Daehlen OG, Rognstad AT, Gronstad B, Egertsdotter U (2005) Somatic embryogenesis for plant production of Abies lasiocarpa. Can J For Res 35:1053–1060

    Google Scholar 

  • Lara-Chavez A, Flinn BS, Egertsdotter U (2011) Initiation of somatic embryogenesis from immature zygotic embryos of Oocarpa pine (Pinus oocarpa Schiede ex Schlectendal). Tree Physiol 31:539–554

    PubMed  Google Scholar 

  • Lara-Chavez A, Egertsdotter U, Flinn BS (2012) Comparison of gene expression markers during zygotic and somatic embryogenesis in pine. In Vitro Cell Dev Biol Plant 48:341–354

    CAS  Google Scholar 

  • Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2006) Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Rep 25:767–776

    CAS  PubMed  Google Scholar 

  • Li XY, Huang H, Gbur EE Jr (1997) Polyethylene glycol-promoted development of somatic embryos in loblolly pine (Pinus taeda L.). In Vitro Cell Dev Biol Plant 33:184–189

    CAS  Google Scholar 

  • Li XY, Huang H, Murphy BJ, Gbur EE Jr (1998) Polyethylene glycol and maltose enhance somatic embryo maturation in loblolly pine (Pinus taeda L.). In Vitro Cell Dev Biol Plant 34:22–26

    CAS  Google Scholar 

  • Litvay JD, Verma DC, Johnson MA (1985) Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 4:325–328

    CAS  PubMed  Google Scholar 

  • Lulsdorf MM, Tautorus TE, Kikcio SI, Dunstan DI (1992) Growth parameters of embryogenic suspension cultures of interior spruce (Picea glauca-engelmannii complex) and black spruce (Picea mariana Mill.). Plant Sci 82:227–234

    CAS  Google Scholar 

  • Ma X, Bucalo K, Determann RO, Cruse-Sanders JM, Pullman GS (2012) Somatic embryogenesis, plant regeneration and cryopreservation for Torreya taxifolia, a highly endangered coniferous species. In Vitro Cell Dev Biol Plant 48:324–334

    CAS  Google Scholar 

  • MacKay J, Becwar M, Park Y, Perfetti C, Cordero J, Lockart L, Pullman GS (2006) Genetic control of somatic embryogenesis initiation in loblolly pine and implications for breeding. Tree Genet Genomes 2:1–9

    Google Scholar 

  • Malá J, Cvikrová M, Máchová P, Martincová O (2009) Polyamines during somatic embryo development in Norway spruce (Picea abies [L.]). J For Sci 55:75–80

    Google Scholar 

  • Malabadi RB, Nataraja K (2007a) 24-Epibrassinolide induces somatic embryogenesis in Pinus wallichiana A. B. Jacks. J Plant Sci 2:171–178

    CAS  Google Scholar 

  • Malabadi RB, Nataraja K (2007b) Putrescine influences somatic embryogenesis and plant regeneration in Pinus geradiana Wall. Am J Plant Physiol 2:107–114

    CAS  Google Scholar 

  • Meskaoui AE, Trembaly FM (2009) Effects of exogenous polyamines and inhibitors of polyamine biosynthesis on endogenous free polyamine contents and the maturation of white spruce somatic embryos. Afr J of Biotechnol 8:6807–6816

    Google Scholar 

  • Minocha SC (1987) pH of the medium and the growth and metabolism of cells in culture. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry, vol 1. Martinus Nijhoff, Boston, pp 125–141

    Google Scholar 

  • Minocha R, Smith DR, Reeves C, Steele KD, Minocha SC (1999) Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata. Physiol Plant 105:155–164

    CAS  Google Scholar 

  • Minocha R, Minocha SC, Long S (2004) Polyamines and their biosynthetic enzymes during somatic embryo development in red spruce (Picea rubens Sarg.). In Vitro Cell Dev Biol Plant 40:572–580

    CAS  Google Scholar 

  • Nagmani R, Bonga JM (1985) Embryogenesis in subcultured callus of Larix decidua. Can J Res 15:1088–1091

    Google Scholar 

  • Nagmani R, Diner AM, Garton S, Zipf AE (1995) Anatomical comparison of somatic and zygotic embryogeny in conifers. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 1. Kluwer, Dordrecht, pp 23–48

  • Nissen SJ, Sutter EG (1990) Stability of IAA and IBA in nutrient medium to several tissue culture procedures. HortScience 25:800–802

    CAS  Google Scholar 

  • Oh TJ, Wartell RM, Cairney J, Pullman GS (2008) Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). New Phytol 179:67–80

    CAS  PubMed  Google Scholar 

  • Pan MJ, van Staden J (1998) The use of charcoal in in vitro culture—a review. Plant Growth Regul 26:155–163

    CAS  Google Scholar 

  • Perez Rodriguez JJ, Suarez MF, Herdia R, Avila C, Breton D, Trontin JF, Filanova L, Bozhkov PL, von Arnold S, Harvengt L, Canovas FM (2006) Expression patterns of two glutamine synthetase genes in zygotic and somatic pine embryos support specific roles in nitrogen metabolism during embryogenesis. New Phytol 169:35–44

    CAS  Google Scholar 

  • Pullman GS (1997) Osmotic measurements of whole ovules during loblolly pine embryo development. In: Proceedings of TAPPI Biological Sciences Symposium. TAPPI Press, Atlanta, GA, pp 41–48

  • Pullman GS, Bucalo K (2011) Techniques and protocol on pine somatic embryogenesis using zygotic embryos as explant materials. In: Thorpe T, Young E (eds) Plant embryo culture: methods and protocols. Humana Press, New York, pp 267–291

    Google Scholar 

  • Pullman GS, Buchanan M (2003) Loblolly pine (Pinus taeda L.): stage-specific elemental analyses of zygotic embryo and female gametophyte tissue. Plant Sci 164:943–954

    CAS  Google Scholar 

  • Pullman GS, Buchanan M (2006) Identification and quantitative analysis of stage-specific organic acids in loblolly pine (Pinus taeda L.) zygotic embryo and female gametophyte. Plant Sci 170:634–647

    CAS  Google Scholar 

  • Pullman GS, Buchanan M (2008) Identification and quantitative analysis of stage-specific carbohydrates in loblolly pine (Pinus taeda) zygotic embryo and female gametophyte tissues. Tree Physiol 28:985–996

    CAS  PubMed  Google Scholar 

  • Pullman GS, Gupta PK (1991) Method for reproducing coniferous plants by somatic embryogenesis using adsorbent materials in the development stage. U.S. Patent No. 5034326. Issued July 23, 1991

  • Pullman GS, Johnson S (2002) Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation rates. Ann For Sci 59:663–668

    Google Scholar 

  • Pullman GS, Johnson S (2009a) Loblolly pine (Pinus taeda L.) female gametophyte and embryo pH changes during embryo and seed development. Tree Physiol 29:829–836

    CAS  PubMed  Google Scholar 

  • Pullman GS, Johnson S (2009b) Osmotic measurements in whole megagametophytes and embryos of loblolly pine (Pinus taeda L.) during embryo and seed development. Tree Physiol 29:819–827

    PubMed  Google Scholar 

  • Pullman GS, Skryabina A (2007) Liquid medium and liquid overlays improve embryogenic tissue initiation in conifers. Plant Cell Rep 26:873–887

    CAS  PubMed  Google Scholar 

  • Pullman GS, Webb DT (1994) An embryo staging system for comparison of zygotic and somatic embryo development. In: TAPPI R&D Division of Biological Sciences Symposium. TAPPI Press, Atlanta, GA, pp 31–34

  • Pullman GS, Cairney J, Xu X, Feng X (1999) Gene expression differences between zygotic and somatic embryos monitored by differential display and cDNA array: a potential tool to improve loblolly pine embryo quality. In: Altman A et al. (eds) Plant biotechnology and in vitro biology in the 21st century. Kluwer, The Netherlands, pp 81–84. ISBN 0-7923-5826-0

  • Pullman GS, Johnson S, Peter G, Cairney J, Xu N (2003a) Improving loblolly pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology, germination, and gene expression. Plant Cell Rep 21:747–758

    CAS  PubMed  Google Scholar 

  • Pullman GS, Montello P, Cairney J, Xu N, Feng X (2003b) Loblolly pine (Pinus taeda L.) somatic embryogenesis: maturation improvements by metal analyses of zygotic and somatic embryos. Plant Sci 164:955–969

    CAS  Google Scholar 

  • Pullman GS, Namjoshi K, Zhang Y (2003c) Somatic embryogenesis in Loblolly pine (Pinus taeda L.): improving culture initiation with abscisic acid and silver nitrate. Plant Cell Rep 22:85–95

    CAS  PubMed  Google Scholar 

  • Pullman GS, Zhang Y, Phan B (2003d) Brassinolide improves embryogenic tissue initiation in conifers and rice. Plant Cell Rep 22:96–104

    CAS  PubMed  Google Scholar 

  • Pullman GS, Gupta PK, Timmis R, Carpenter C, Kreitinger M, Welty E (2005a) Improved Norway spruce somatic embryo development through the use of abscisic acid combined with activated carbon. Plant Cell Rep 24:271–279

    CAS  PubMed  Google Scholar 

  • Pullman GS, Johnson S, Van Tassel S, Zhang Y (2005b) Somatic embryogenesis in loblolly pine (Pinus taeda L.) and Douglas fir (Pseudotsuga menziesii): improving culture initiation with MES pH buffer, biotin, and folic acid. Plant Cell, Tissue Organ Cult 80:91–103

    CAS  Google Scholar 

  • Pullman GS, Mein J, Johnson S, Zhang Y (2005c) Gibberellin inhibitors improve embryogenic tissue initiation in conifers. Plant Cell Rep 23:596–605

    CAS  PubMed  Google Scholar 

  • Pullman GS, Chopra R, Chase KM (2006) Loblolly pine (Pinus taeda L.) somatic embryogenesis: improvements in embryogenic tissue initiation by supplementation of medium with organic acids, Vitamins B12 and E. Plant Sci 170:648–658

    CAS  Google Scholar 

  • Pullman GS, Chase KM, Skryabina A, Bucalo K (2008) Conifer embryogenic tissue initiation: improvements by supplementation of medium with d-chiro-inositol and d-xylose. Tree Physiol 29:147–156

    PubMed  Google Scholar 

  • Pullman GS, Copeland B, Zeng X (2009a) Analysis of seed redox chemicals in loblolly pine to improve somatic embryo growth and germination. 30th Southern Tree Improvement Conference (SFTIC), Blacksburg, VA, May 31 to June 3, 2009. http://www.rngr.net/publications/tree-improvement-proceedings/sftic/2009/analysis-of-seed-redox-chemicals-in-loblolly-pine-to-improve-somatic-embryo-growth-and-germination

  • Pullman GS, Johnson S, Bucalo K (2009b) Douglas fir embryogenic tissue initiation. Plant Cell Organ Tissue Cult 96:75–84

    Google Scholar 

  • Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51:501–531

    CAS  PubMed  Google Scholar 

  • Rai MK, Shekhawat NS, Harish, Gupta AK, Phulwaria M, Ram K, Jaiswal U (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell, Tissue Organ Cult 106:179–190

    CAS  Google Scholar 

  • Ramirez-Para E, Desovoyes B, Gutierrez C (2005) Balance between cell division and differentiation during plant development. Int J Dev Biol 49:467–477

    Google Scholar 

  • Reid DA, Lott JNA, Atree SM, Fowke LC (1999) Mineral nutrition of white spruce (Picea glauca [Moench] Voss) seeds and somatic embryos. I. Phosphorous, phytic acid, potassium, magnesium, calcium, iron, and zinc. Plant Sci 141:11–18

    CAS  Google Scholar 

  • Robinson AR, Dauwe R, Ukrainetz NK, Cullis IF, White R, Mansfield SD (2009) Predicting the regenerative capacity of conifer somatic embryogenic cultures by metabolomics. Plant Biotechnol J 7:952–963

    CAS  PubMed  Google Scholar 

  • Roustan JP, Latche A, Fallot J (1989) Stimulation of Daucus carota somatic embryogenesis by inhibitors of ethylene synthesis: cobalt and nickel. Plant Cell Rep 8:182–185

    CAS  PubMed  Google Scholar 

  • Roustan JP, Latche A, Fallot J (1990) Control of carrot somatic embryogenesis by AgNO3, an inhibitor of ethylene action: effect on arginine decarboxylase. Plant Sci 67:89–95

    CAS  Google Scholar 

  • Rudus I, Kepczynska E, Kepczynski J (2000) Regulation of Medicago sativa L. somatic embryogenesis by gibberellins. Plant Growth Regul 36:91–95

    Google Scholar 

  • Ruiz-May E, De la Peña C, Ayil-Gutiérrez BA, Nic-Can GI, Mukul-López HG, Galaz-Ávalos RM, Loyola-Vargas VM (2010) Protein secretion by cell cultures: an essential biological issue. In: RohdeW, Fermin G (eds) Proceedings of II international symposium on Guava and other Myrtaceae, Acta Hort 849:213–222

  • Saab IN, Obendorf RL (1989) Soybean seed water relations during in situ and in vitro growth and maturation. Plant Physiol 89:610–616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:581–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarjala T, Haggman H, Aronen T (1997) Effect of exogenous polyamines and inhibitors of polyamine biosynthesis on growth and free polyamine contents of embryogenic Scots pine callus. J Plant Physiol 150:597–602

    CAS  Google Scholar 

  • Satyan SH, Patwardhan MV (1983) Organic acid metabolism during ripening of fruits. Indian J Biochem Biophys 20:311–314

    CAS  PubMed  Google Scholar 

  • Selby C, McRoberts WC, Hamilton JTG, Harvey BMR (1996) The influence of culture vessel head space volatiles on somatic embryo maturation in Sitka spruce [Picea sitchensis (Bong) Carr.] by butylated hydroxytoluene, a volatile antioxidant released by Parafilm. Plant Cell Rep 16:192–195

    CAS  PubMed  Google Scholar 

  • Shultz RP (1999) Loblolly—the pine for the twenty-first century. New For 17:71–88

    Google Scholar 

  • Silva AMN, Kong X, Parkin MC, Cammack R, Hinder C (2009) Iron(III) citrate speciation in aqueous solution. Dalton Trans 2009:8616–8625

    Google Scholar 

  • Silveira V, Floh EIS, Handro W, Guerra MP (2004) Effect of plant growth regulators on the cellular growth and levels of intracellular proteins, starch and polyamines in embryogenic suspension cultures of Pinus taeda. Plant Cell, Tissue Organ Cult 76:53–60

    CAS  Google Scholar 

  • Singh H (1978) Embryology of gymnosperms. In: Handbuch der Pflanzenanatomie (Encyclopedia of Plant Anatomy), Vol. 10, Part 2. Gebruder Borntraeger, Berlin

  • Smith D (1996) Growth medium. US Patent No. 5,565,355. Issued October 15, 1996

  • Smith DR, Singh AP, Wilton L (1985) Zygotic embryos of Pinus radiata in vivo and in vitro. In: Proceedings of third meeting international conifer tissue culture work group, 12–16 August, 1985, Rotorua, New Zealand, p 21

  • Stasolla C (2010) Glutathione redox regulation of in vitro embryogenesis. Plant Physiol Biochem 48:319–327

    CAS  PubMed  Google Scholar 

  • Stasolla C, Yeung EC (1999) Ascorbic acid improves conversion of white spruce somatic embryos. In Vitro Cell Dev Biol Plant 35:316–319

    CAS  Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell, Tissue Organ Cult 74:15–35

    CAS  Google Scholar 

  • Stasolla C, Kong L, Yeung EC, Thorpe TA (2002) Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry and molecular biology. In Vitro Cell Dev Biol Plant 38:93–105

    CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc, Sunderland, MA

    Google Scholar 

  • Tautorus TE, Fowke LC, Dunstan DI (1991) Somatic embryogenesis in conifers. Can J Bot 69:1873–1899

    Google Scholar 

  • Teasdale RD, Dawson PA, Woolhouse HW (1986) Mineral nutrient requirements of a loblolly pine (Pinus taeda) cell suspension culture. Plant Physiol 82:942–945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 26:618–631

    CAS  PubMed  Google Scholar 

  • Thomas C, Jimenez VM (2005) Mode of action of plant hormones and plant growth regulators during induction of somatic embryogenesis: molecular aspects. Plant Cell Monogr 2:158–175

    Google Scholar 

  • Timmis R (1998) Bioprocessing for tree production in the forest industry: conifer somatic embryogenesis. Biotechnol 14:156–166

    CAS  Google Scholar 

  • Toering A, Pullman GS (2005) Modeling available 2,4-dichlorophenoxyacetic acid in a tissue culture medium containing activated carbon. Plant Cell, Tissue Organ Cult 82:179–188

    CAS  Google Scholar 

  • Vales T, Fang X, Ge L, Xu N, Cairney J, Pullman GS, Peter GF (2007) Improved somatic embryo maturation in loblolly pine by monitoring ABA-responsive gene expression. Plant Cell Rep 26:133–143

    CAS  PubMed  Google Scholar 

  • Van Winkle SC, Pullman GS (2003) The combined impact of pH and activated carbon on the elemental composition of plant tissue culture media. Plant Cell Rep 22:303–311

    PubMed  Google Scholar 

  • Van Winkle SC, Pullman GS (2005) Achieving desired plant growth regulator levels in liquid plant tissue culture media that include activated carbon. Plant Cell Rep 24:201–208

    CAS  PubMed  Google Scholar 

  • Van Winkle SC, Johnson S, Pullman GS (2003) The impact of Gelrite and activated carbon on the elemental composition of plant tissue culture media. Plant Cell Rep 21:1175–1182

    PubMed  Google Scholar 

  • Vieira LN, Santa-Catarinab C, Fragaa HPF, Santosc ALW, Steinmachera DA, Schlogla PS, Silveirad V, Steinera N, Flohc EIS, Guerraa MP (2012) Glutathione improves early somatic embryogenesis in Araucaria angustifolia (Bert) O. Kuntze by alteration in nitric oxide emission. Plant Sci 195:80–87

    CAS  Google Scholar 

  • von Aderkas P, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928

    Google Scholar 

  • von Aderkas P, Label P, Lelu MA (2002) Charcoal affects early development and hormonal concentrations of somatic embryos of hybrid larch. Tree Physiol 22:431–434

    Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell, Tissue Organ Cult 69:233–249

    Google Scholar 

  • von Arnold S, Bozhkov P, Clapham D, Dyachok J, Filonova L, Högberg KA, Ingouff M, Wiweger M (2005) Propagation of Norway spruce via somatic embryogenesis. Plant Cell, Tissue Organ Cult 81:323–329

    Google Scholar 

  • Vuosku J, Jokela A, Läärä E, Sääskilahti M, Muilu R, Sutela S, Altabella T, Sarjala T, Häggman H (2006) Consistency of polyamine profiles and expression of arginine decarboxylase in mitosis during zygotic embryogenesis of Scots pine. Plant Physiol 142:1027–1038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vuosku J, Suorsa M, Ruottinen M, Sutela S, Muilu-Mäkelä R, Julkunen-Tiitto R, Sarjala T, Neubauer P, Häggman H (2012) Polyamine metabolism during exponential growth transition in Scots pine embryogenic cell culture. Tree Physiol 32:1274–1287

    CAS  PubMed  Google Scholar 

  • Xu N, Johns B, Pullman GS, Cairney J (1997) Rapid and reliable differential display from minute amounts of tissue: mass cloning and characterization of differentially expressed genes from loblolly pine embryos. Plant Mol Biol Rep 15:377–391

    CAS  Google Scholar 

  • Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 205–249

    Google Scholar 

  • Yeung EC, Belmonte MF, Tu LTT, Stasolla C (2005) Glutathione modulation of in vitro development. In Vitro Cellular Dev Biol Plant 41:584–590

    Google Scholar 

  • Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotechnol. January 15, 2010, vol 13, no. 1 [11/14/13]. http://www.ejbiotechnology.cl/content/vol13/issue1/full/4/index.html. ISSN 0717-3458

  • Zoglauer K, Behrendt U, Rahmat A, Ross H, Taryono (2003) Somatic embryogenesis—the gate to biotechnology in conifers. In: Laimer M, Rücker W (eds) Plant tissue culture, 100 years since Gottlieb Haberlandt. Springer, New York, pp 175–202

    Google Scholar 

Download references

Acknowledgments

The authors thank the member companies of the Institute of Paper Science and Technology and IPST at Georgia Tech, State of Georgia TIP3 Program, Consortium for Plant Biotechnology Research by the DOE Prime Agreement No. DEFG36-02GO12026 and USEPA grant EM-83438801, and Arborgen, Monsanto Company and Weyerhaeuser Company as members of CPBR, for financial support. We thank Arborgen, MeadWestvaco Corporation and Weyerhaeuser NR Company for cone collections. In addition, the authors are grateful for the valuable assistance of Michael Buchanan, Kylie Bucalo, John Cairney, Erin Clark, Molly Clark, Brandi Copeland, Kelly-Marie Chase, Xiaorong Feng, Jennifer Grabowski, Shannon Johnson, Sheldon W. May, Jonathan Mein, Paul Montello, Kavita Namjoshi, Anna Skryabina, Xiaoyan Zeng and Yalin Zhang and PK Gupta for critical reading of the early draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald S. Pullman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pullman, G.S., Bucalo, K. Pine somatic embryogenesis: analyses of seed tissue and medium to improve protocol development. New Forests 45, 353–377 (2014). https://doi.org/10.1007/s11056-014-9407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-014-9407-y

Keywords

Navigation