Advertisement

New Forests

, Volume 45, Issue 2, pp 235–250 | Cite as

Soil water affects transpiration response to rainfall and vapor pressure deficit in poplar plantation

  • Lixin Chen
  • Zhiqiang Zhang
  • Tonggang Zha
  • Kangle Mo
  • Yan Zhang
  • Xianrui Fang
Article

Abstract

Influences of environmental factors on transpiration are interactive. Sensitivities of transpiration responses to both evaporative demand and rainfall under contrasting soil water conditions constitute the physiological basis of the drought tolerance of trees. Such knowledge is practically significant for plantation management, especially for irrigation management. We therefore conducted a 6-year study on the transpiration of a poplar plantation in temperate China to elucidate the existence and pattern of the influence of the soil water over stand transpiration responses to (1) vapor pressure deficit (VPD), the major indicator of air dryness and (2) the rainfall, in terms of total amount and event size. The results showed that the response of plantation transpiration (E c ) to VPD was conditioned by soil moisture. There was a significant difference in the frequency distribution of maximum sap flux under contrasting soil relative extractable water. E c after rainfall of different sizes varied under similar VPD. The increasing occurrences of only large rainfall events led to enhanced total E c during the growing season, but prolonged rainless intervals did not lead to a continuous decrease of E c , suggesting appreciable supplements from the soil water were present to sustain transpiration. In addition, the balance of soil water between replenishment and extraction also conditioned the influence of rainfall over subsequent E c during the respective rainless intervals. Based on the E c responses to VPD and rainfall under different soil moisture levels, irrigation that directly replenishes the deep soil layers in order to alleviate water stress on transpiration during the small-rain event-dominated growing season is an effective and water-saving approach to guarantee trees survival during drought period.

Keywords

Rainfall pattern Soil water Stand transpiration Evaporative demand Populus × euramericana 

Abbreviations

VPD

Vapor pressure deficit

R

Solar radiation

θ

Soil water content

REW

Relative extractable water

Notes

Acknowledgments

The authors thank the reviewers for their work and remarks. The study gets the financial support from the National Forestry Public Welfare Industry Project (Grant No. 201204102).

References

  1. Anderegg WR, Plavcová L, Anderegg LD, Hacke UG, Berry JA, Field CB (2013) Drought’s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die‐off and portends increased future risk. Glob Change Biol 19(4):1188–1196. doi: 10.1111/gcb.12100 Google Scholar
  2. Asbjornsen H, Tomer MD, Gomez-Cardenas M, Brudvig LA, Greenan CM, Schilling K (2007) Tree and stand transpiration in a Midwestern bur oak savanna after elm encroachment and restoration thinning. For Ecol Manag 247(1–3):209–219. doi: 10.1016/j.foreco.2007.04.043 CrossRefGoogle Scholar
  3. Belko N, Zaman-Allah M, Cisse N, Diop NN, Zombre G, Ehlers JD, Vadez V (2012) Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea. Funct Plant Biol 39(4):306–322. doi: 10.1071/FP11282 CrossRefGoogle Scholar
  4. Belko N, Zaman-Allah M, Diop NN, Cisse N, Zombre G, Ehlers JD, Vadez V (2013) Restriction of transpiration rate under high vapour pressure deficit and non-limiting water conditions is important for terminal drought tolerance in cowpea. Plant Biol 15(2):304–316. doi: 10.1111/j.1438-8677.2012.00642.x PubMedCrossRefGoogle Scholar
  5. Bleby TM, Mcelrone AJ, Jackson RB (2010) Water uptake and hydraulic redistribution across large woody root systems to 20 m depth. Plant, Cell Environ 33(12):2132–2148CrossRefGoogle Scholar
  6. Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75(5):1437–1449Google Scholar
  7. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann Forest Sci 63:625–644Google Scholar
  8. Brooks JR, Meinzer FC, Coulombe R, Gregg J (2002) Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiol 22(15–16):1107–1117PubMedCrossRefGoogle Scholar
  9. Brooks JR, Meinzer FC, Warren JM, Domec J-C, Coulombe ROB (2006) Hydraulic redistribution in a Douglas-fir forest: lessons from system manipulations. Plant, Cell Environ 29(1):138–150. doi: 10.1111/j.1365-3040.2005.01409.x CrossRefGoogle Scholar
  10. Bruno RD, da Rocha HR, de Freitas HC, Goulden ML, Miller SD (2006) Soil moisture dynamics in an eastern Amazonian tropical forest. Hydrol Process 20(12):2477–2489. doi: 10.1002/hyp.6211 CrossRefGoogle Scholar
  11. Burgess SSO, Pate JS, Adams MA, Dawson TE (2000) Seasonal water acquisition and redistribution in the Australian woody phreatophyte, Banksia prionotes. Ann Bot 85(2):215–224CrossRefGoogle Scholar
  12. Burgess SSO (2006) Measuring transpiration responses to summer precipitation in a Mediterranean climate: a simple screening tool for identifying plant water-use strategies. Physiol Plantarum 127(3):404–412Google Scholar
  13. Bush S, Pataki D, Hultine K, West A, Sperry J, Ehleringer J (2008) Wood anatomy constrains stomatal responses to atmospheric vapor pressure deficit in irrigated, urban trees. Oecologia 156(1):13–20. doi: 10.1007/s00442-008-0966-5 PubMedCrossRefGoogle Scholar
  14. Calder I (2001) Canopy processes: implications for transpiration, interception and splash induced erosion, ultimately for forest management and water resources. In: Linsenmair KE, Davis AJ, Fiala B, Speight MR (eds) Tropical forest canopies: ecology and management, vol 69. Forestry sciences. Springer, Heidelberg, pp 203–214. doi: 10.1007/978-94-017-3606-0_16 CrossRefGoogle Scholar
  15. Chapotin SM, Razanameharizaka JH, Holbrook NM (2006) Baobab trees (Adansonia) in Madagascar use stored water to flush new leaves but not to support stomatal opening before the rainy season. N Phytol 169(3):549–559CrossRefGoogle Scholar
  16. Chen L, Zhang Z, Ewers BE (2012) Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions. PLoS ONE 7(10):e47882. doi: 10.1371/journal.pone.0047882 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Clausnitzer F, Köstner B, Schwärzel K, Bernhofer C (2011) Relationships between canopy transpiration, atmospheric conditions and soil water availability—Analyses of long-term sap-flow measurements in an old Norway spruce forest at the Ore Mountains/Germany. Agric For Meteorol 151(8):1023–1034. doi: 10.1016/j.agrformet.2011.04.007 CrossRefGoogle Scholar
  18. Clearwater MJ, Meinzer FC, Andrade JL, Goldstein G, Holbrook NM (1999) Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiol 19(10):681–687PubMedCrossRefGoogle Scholar
  19. Comas LH, Bauerle TL, Eissenstat DM (2010) Biological and environmental factors controlling root dynamics and function: effects of root ageing and soil moisture. Aust J Grape Wine Res 16:131–137. doi: 10.1111/j.1755-0238.2009.00078.x CrossRefGoogle Scholar
  20. Doody TM, Holland KL, Benyon RG, Jolly ID (2009) Effect of groundwater freshening on riparian vegetation water balance. Hydrol Process 23(24):3485–3499. doi: 10.1002/hyp.7460 CrossRefGoogle Scholar
  21. Du S, Wang Y-L, Kume T, Zhang J-G, Otsuki K, Yamanaka N, Liu G-B (2011) Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China. Agric For Meteorol 151(1):1–10CrossRefGoogle Scholar
  22. Elliott S, Baker PJ, Borchert R (2006) Leaf flushing during the dry season: the paradox of Asian monsoon forests. Glob Ecol Biogeogr 15(3):248–257. doi: 10.1111/j.1466-8238.2006.00213.x CrossRefGoogle Scholar
  23. Farrick KK, Price JS (2009) Ericaceous shrubs on abandoned block-cut peatlands: implications for soil water availability and Sphagnum restoration. Ecohydrology 2(4):530–540. doi: 10.1002/eco.77 CrossRefGoogle Scholar
  24. Franks PJ, Drake PL, Froend RH (2007) Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant, Cell Environ 30(1):19–30. doi: 10.1111/j.1365-3040.2006.01600.x CrossRefGoogle Scholar
  25. Gartner K, Nadezhdina N, Englisch M, Cermak J, Leitgeb E (2009) Sap flow of birch and Norway spruce during the European heat and drought in summer 2003. For Ecol Manag 258(5):590–599CrossRefGoogle Scholar
  26. Gazal RM, Scott RL, Goodrich DC, Williams DG (2006) Controls on transpiration in a semiarid riparian cottonwood forest. Agric For Meteorol 137(1–2):56–67. doi: 10.1016/j.agrformet.2006.03.002 CrossRefGoogle Scholar
  27. Gholipoor M, Choudhary S, Sinclair TR, Messina CD, Cooper M (2013) Transpiration response of maize hybrids to atmospheric vapour pressure deficit. J Agron Crop Sci 199(3):155–160. doi: 10.1111/jac.12010 CrossRefGoogle Scholar
  28. Granier A (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol 3(4):309–320PubMedCrossRefGoogle Scholar
  29. Guan D-X, Zhang X-J, Yuan F-H, Chen N–N, Wang A-Z, Wu J-B, Jin C-J (2011) The relationship between sap flow of intercropped young poplar trees (Populus × euramericana cv. N3016) and environmental factors in a semiarid region of northeastern China. Hydrol Processes. doi: 10.1002/hyp.8250
  30. Guo W, Li B, Zhang X, Wang R (2010) Effects of water stress on water use efficiency and water balance components of Hippophae rhamnoides and Caragana intermedia in the soil–plant–atmosphere continuum. Agrofor Syst 80(3):423–435. doi: 10.1007/s10457-010-9337-4 CrossRefGoogle Scholar
  31. Hanson PJ, Weltzin JF (2000) Drought disturbance from climate change: response of United States forests. Sci Total Environ 262(3):205–220PubMedCrossRefGoogle Scholar
  32. Hubbard RM, Ryan MG, Stiller V, Sperry JS (2001) Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant, Cell Environ 24(1):113–121. doi: 10.1046/j.1365-3040.2001.00660.x CrossRefGoogle Scholar
  33. Hutley LB, O’Grady AP, Eamus D (2000) Evapotranspiration from Eucalypt open-forest savanna of Northern Australia. Funct Ecol 14(2):183–194. doi: 10.1046/j.1365-2435.2000.00416.x CrossRefGoogle Scholar
  34. Ivans S, Hipps L, Leffler AJ, Ivans CY (2006) Response of water vapor and CO2 fluxes in semiarid lands to seasonal and intermittent precipitation pulses. J Hydrometeorol 7(5):995–1010CrossRefGoogle Scholar
  35. Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5(11):482–488. doi: 10.1016/s1360-1385(00)01766-0 PubMedCrossRefGoogle Scholar
  36. Kochler M, Kage H, Stützel H (2007) Modelling the effects of soil water limitations on transpiration and stomatal regulation of cauliflower. Eur J Agron 26(4):375–383. doi: 10.1016/j.eja.2006.12.003 CrossRefGoogle Scholar
  37. Köstner B, Matyssek R, Heilmeier H, Clausnitzer F, Nunn AJ, Wieser G (2008) Sap flow measurements as a basis for assessing trace-gas exchange of trees. Flora 203:14–33CrossRefGoogle Scholar
  38. Kučerová A, Čermák J, Nadezhdina N, Pokorný J (2010) Transpiration of Pinus rotundata on a wooded peat bog in central Europe. Trees 24(5):919–930. doi: 10.1007/s00468-010-0463-4 CrossRefGoogle Scholar
  39. Kumagai T, Saitoh TM, Sato Y, Morooka T, Manfroi OJ, Kuraji K, Suzuki M (2004) Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak, Borneo: dry spell effects. J Hydrol 287(1–4):237–251CrossRefGoogle Scholar
  40. Kumagai T, Aoki S, Nagasawa H, Mabuchi T, Kubota K, Inoue S, Utsumi Y, Otsuki K (2005) Effects of tree-to-tree and radial variations on sap flow estimates of transpiration in Japanese cedar. Agric For Meteorol 135(1–4):110–116. doi: 10.1016/j.agrformet.2005.11.007 CrossRefGoogle Scholar
  41. Laiju N, Otieno D, Jung E-Y, Lee B, Tenhunen J, Lim J-H, Sung J-H, Kang S (2012) Environmental controls on growing-season sap flow density of Quercus serrata Thunb in a temperate deciduous forest of Korea. J Ecol Field Biol 35(3):213–225Google Scholar
  42. Licata JA, Gyenge JE, Fernández ME, Schlichter TM, Bond BJ (2008) Increased water use by ponderosa pine plantations in northwestern Patagonia, Argentina compared with native forest vegetation. For Ecol Manag 255(3–4):753–764. doi: 10.1016/j.foreco.2007.09.061 CrossRefGoogle Scholar
  43. Liu Y, Leng X, Deng Z, Wang L, Zhang L, Liu S, An S (2011) Effects of watershed vegetation on tributary water yields during the wet season in the Heishui Valley, China. Water Resour Manag 25(5):1449–1464. doi: 10.1007/s11269-010-9754-1 CrossRefGoogle Scholar
  44. Lloret F, Granzow-de la Cerda I (2013) Plant competition and facilitation after extreme drought episodes in Mediterranean shrubland: does damage to vegetation cover trigger replacement by juniper woodland? J Veg Sci 24(6):1020–1032. doi: 10.1111/jvs.12030 Google Scholar
  45. Lu P, Urban L, Zhao P (2004) Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Bot Sin 46(6):631–646Google Scholar
  46. MacKay SL, Arain MA, Khomik M, Brodeur JJ, Schumacher J, Hartmann H, Peichl M (2012) The impact of induced drought on transpiration and growth in a temperate pine plantation forest. Hydrol Process 26(12):1779–1791CrossRefGoogle Scholar
  47. Marin CT, Bouten W, Sevink J (2000) Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia. J Hydrol 237(1–2):40–57. doi: 10.1016/S0022-1694(00)00301-2 CrossRefGoogle Scholar
  48. McJannet D, Fitch P, Disher M, Wallace J (2007) Measurements of transpiration in four tropical rainforest types of north Queensland, Australia. Hydrol Process 21(26):3549–3564. doi: 10.1002/hyp.6576 CrossRefGoogle Scholar
  49. Meinzer FC, Hinckley TM, Ceulemans R (1997) Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy. Plant, Cell Environ 20(10):1301–1308. doi: 10.1046/j.1365-3040.1997.d01-18.x CrossRefGoogle Scholar
  50. Morecroft M, Masters G, Brown V, Clarke I, Taylor M, Whitehouse A (2004) Changing precipitation patterns alter plant community dynamics and succession in an ex-arable grassland. Funct Ecol 18(5):648–655CrossRefGoogle Scholar
  51. Morgan HD, Barton CVM (2008) Forest-scale sap flux responses to rainfall in a dryland eucalyptus plantation.  Plant Soil  305:131–144. doi: 10.1007/s11104-008-9558-8 Google Scholar
  52. Nadezhdina N, Ferreira MI, Silva R, Pacheco CA (2008) Seasonal variation of water uptake of a Quercus suber tree in Central Portugal. Plant Soil 305(1):105–119CrossRefGoogle Scholar
  53. Nardini A, Salleo S (2000) Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? Trees-Struct Funct 15(1):14–24. doi: 10.1007/s004680000071 CrossRefGoogle Scholar
  54. Perry CH, Miller RC, Brooks KN (2001) Impacts of short-rotation hybrid poplar plantations on regional water yield. For Ecol Manag 143(1–3):143–151. doi: 10.1016/s0378-1127(00)00513-2 CrossRefGoogle Scholar
  55. Plaut JA, Wadsworth WD, Pangle R, Yepez EA, McDowell NG, Pockman WT (2013) Reduced transpiration response to precipitation pulses precedes mortality in a pinon-juniper woodland subject to prolonged drought. N Phytol 200(2):375–387. doi: 10.1111/Nph.12392 CrossRefGoogle Scholar
  56. Prieto I, Martínez-Tillería K, Martínez-Manchego L, Montecinos S, Pugnaire FI, Squeo FA (2010) Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems: patterns and control mechanisms. Oecologia 163(4):855–865PubMedCrossRefGoogle Scholar
  57. Raz-Yaseef N, Yakir D, Schiller G, Cohen S (2012) Dynamics of evapotranspiration partitioning in a semi-arid forest as affected by temporal rainfall patterns. Agric For Meteorol 157:77–85CrossRefGoogle Scholar
  58. Renninger HJ, Phillips N, Salvucci GD (2010) Wet- vs. dry-season transpiration in an amazonian rain forest palm Iriartea deltoidea. Biotropica 42(4):470–478. doi: 10.1111/j.1744-7429.2009.00612.x CrossRefGoogle Scholar
  59. Reynolds J, Kemp P, Tenhunen J (2000) Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: a modeling analysis. Plant Ecol 150(1–2):145–159. doi: 10.1023/a:1026530522612 CrossRefGoogle Scholar
  60. Reynolds JF, Kemp PR, Ogle K, Fernández RJ (2004) Modifying the ‘pulse–reserve’ paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia 141(2):194–210. doi: 10.1007/s00442-004-1524-4 PubMedCrossRefGoogle Scholar
  61. Rodriguez-Iturbe I (2000) Ecohydrology: a hydrologic perspective of climate-soil-vegetation dynamies. Water Resour Res 36(1):3–9CrossRefGoogle Scholar
  62. Rogiers SY, Greer DH, Hatfield JM, Hutton RJ, Clarke SJ, Hutchinson PA, Somers A (2012) Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Tree Physiol 32(3):249–261PubMedCrossRefGoogle Scholar
  63. Ruiz-Sinoga JD, Gabarrón Galeote MA, Martinez Murillo JF, Garcia Marín R (2011) Vegetation strategies for soil water consumption along a pluviometric gradient in southern Spain. CATENA 84(1–2):12–20. doi: 10.1016/j.catena.2010.08.011 CrossRefGoogle Scholar
  64. Ryel RJ, Leffler A, Peek M, Ivans C, Caldwell M (2004) Water conservation in Artemisia tridentata through redistribution of precipitation. Oecologia 141(2):335–345PubMedCrossRefGoogle Scholar
  65. Schoppach R, Sadok W (2012) Differential sensitivities of transpiration to evaporative demand and soil water deficit among wheat elite cultivars indicate different strategies for drought tolerance. Environ Exp Bot 84:1–10CrossRefGoogle Scholar
  66. Schwinning S, Davis K, Richardson L, Ehleringer J (2002) Deuterium enriched irrigation indicates different forms of rain use in shrub/grass species of the Colorado Plateau. Oecologia 130(3):345–355CrossRefGoogle Scholar
  67. Schwinning S, Starr BI, Ehleringer JR (2003) Dominant cold desert plants do not partition warm season precipitation by event size. Oecologia 136(2):252–260PubMedCrossRefGoogle Scholar
  68. Scott RL, Cable WL, Hultine KR (2008) The ecohydrologic significance of hydraulic redistribution in a semiarid savanna. Water Resour Res 44(2):W02440CrossRefGoogle Scholar
  69. Siegert C, Levia D (2011) Stomatal conductance and transpiration of co-occurring seedlings with varying shade tolerance. Trees 25(6):1091–1102. doi: 10.1007/s00468-011-0584-4 CrossRefGoogle Scholar
  70. Silberstein R, Held A, Hatton T, Viney N, Sivapalan M (2001) Energy balance of a natural jarrah (Eucalyptus marginata) forest in Western Australia: measurements during the spring and summer. Agric For Meteorol 109(2):79–104. doi: 10.1016/s0168-1923(01)00263-5 CrossRefGoogle Scholar
  71. Smith S, Devitt D, Sala A, Cleverly J, Busch D (1998) Water relations of riparian plants from warm desert regions. Wetlands 18(4):687–696. doi: 10.1007/bf03161683 CrossRefGoogle Scholar
  72. Stoker R, Weatherley PE (1971) The influence of the root system on the relationship between the rate of transpiration and depression of leaf water potential. N Phytol 70(3):547–554. doi: 10.1111/j.1469-8137.1971.tb02556.x CrossRefGoogle Scholar
  73. Tognetti R, Giovannelli A, Lavini A, Morelli G, Fragnito F, d’Andria R (2009) Assessing environmental controls over conductances through the soil–plant–atmosphere continuum in an experimental olive tree plantation of southern Italy. Agric For Meteorol 149(8):1229–1243CrossRefGoogle Scholar
  74. Ungar ED, Rotenberg E, Raz-Yaseef N, Cohen S, Yakir D, Schiller G (2013) Transpiration and annual water balance of Aleppo pine in a semiarid region: implications for forest management. For Ecol Manag 298:39–51. doi: 10.1016/j.foreco.2013.03.003 CrossRefGoogle Scholar
  75. Varela S, Gyenge J, Fernández M, Schlichter T (2010) Seedling drought stress susceptibility in two deciduous Nothofagus species of NW Patagonia. Trees-Struct Funct 24(3):443–453. doi: 10.1007/s00468-010-0412-2 CrossRefGoogle Scholar
  76. Wallace J, McJannet D (2010) Processes controlling transpiration in the rainforests of north Queensland, Australia. J Hydrol 384(1–2):107–117CrossRefGoogle Scholar
  77. Weltzin J, Loik M, Schwinning S, Williams D, Fay P, Haddad B, Harte J, Huxman T, Knapp A, Lin G (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53(10):941–952CrossRefGoogle Scholar
  78. Wilske B, Lu N, Wei L, Chen S, Zha T, Liu C, Xu W, Noormets A, Huang J, Wei Y, Chen J, Zhang Z, Ni J, Sun G, Guo K, McNulty S, John R, Han X, Lin G, Chen J (2009) Poplar plantation has the potential to alter the water balance in semiarid Inner Mongolia. J Environ Manag 90(8):2762–2770. doi: 10.1016/j.jenvman.2009.03.004 CrossRefGoogle Scholar
  79. Zeppel M, Macinnis-Ng CMO, Ford CR, Eamus D (2008) The response of sap flow to pulses of rain in a temperate Australian woodland. Plant Soil. doi: 10.1007/s11104-007-9349-7
  80. Zhang L, Dawes WR, Walker GR (2001) Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour Res 37(3):701–708. doi: 10.1029/2000wr900325 CrossRefGoogle Scholar
  81. Zimmermann R, Schulze E-D, Wirth C, Schulze E–E, McDonald KC, Vygodskaya NN, Ziegler W (2000) Canopy transpiration in a chronosequence of Central Siberian pine forests. Glob Change Biol 6(1):25–37. doi: 10.1046/j.1365-2486.2000.00289.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Lixin Chen
    • 1
  • Zhiqiang Zhang
    • 1
  • Tonggang Zha
    • 1
  • Kangle Mo
    • 1
  • Yan Zhang
    • 2
  • Xianrui Fang
    • 1
  1. 1.Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, College of Soil and Water ConservationBeijing Forestry UniversityBeijingPeople’s Republic of China
  2. 2.Yunnan Academy of Applied TechnologyKunmingPeople’s Republic of China

Personalised recommendations