Skip to main content

Advertisement

Log in

Ectomycorrhizal inoculation with Pisolithus tinctorius increases the performance of Quercus suber L. (cork oak) nursery and field seedlings

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Mediterranean ecosystems are characterized by large arid areas where the patchy distribution of trees offers little protection against harsh climate conditions for seedling establishment. Climate change is predicted to result in an increase in these arid regions, with pronounced effects on vegetation. Production of seedlings with developed ectomycorrhizas is a promising strategy for minimizing the initial transplant shock, thereby increasing plant survival and growth during the first, most critical years of a plantation. One important species in the Mediterranean basin is Quercus suber (cork oak), which occurs, together with other evergreen oak species, in an agro-silvo-pastoral system that represents an example of sustainable land use in Europe. In this study, a Pisolithus tinctorius isolate was used for ectomycorrhizal colonization of cork oak nursery seedlings, and the effects on aboveground plant growth and leaf structural and physiological parameters were investigated. Ectomycorrhizal development resulted in a significant increase in leaf area, dry weight, nitrogen content, and photosynthetic pigments, and mycorrhizal plants showed a higher photosynthetic capacity and water use efficiency. Nursery-inoculated plants established in the field showed increased survival and growth during the first year after transplant. These results indicate a potential for further enhancing the use of mycorrhizal inoculation as a cultivation practice in forest nurseries. Considering the difficulty of soil restoration under limiting environmental conditions, nursery inoculation with ectomycorrhizal fungi can be an important advantage for improving the quality of seedling stock and its performance after out-planting in the field, benefiting the regeneration of arid regions and the reintroduction of inocula of ectomycorrhizal fungi into these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acácio V, Holmgren M, Jansen P, Schrotter O (2007) Multiple recruitment limitation causes arrested succession in Mediterranean cork oak systems. Ecosystems 10:1220–1230

    Article  Google Scholar 

  • Adriaensen K, Van Der Lelie D, Van Laere A, Vangronsveld J, Colpaert JV (2003) A zinc-adapted fungus protects pines from zinc stress. New Phytol 161:549–555

    Article  Google Scholar 

  • Allan et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro- Fernández C, López-García A, Estrada B, Azcón R, Ferrol N, Azcón-Aguilar C (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301

    Article  Google Scholar 

  • Brazanti MB, Rocca E, Pisi E (1999) Effect of ectomycorrhizal fungi on chestnut ink disease. Mycorrhiza 9:103–109

    Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. AClAR, Canberra

    Google Scholar 

  • Candeias C, Ferreira da Silva E, Salgueiro AR, Pereira HG, Matos JX, Avila PH (2011) Assessment of soil contamination by potentially toxic elements in the Aljustrel mining area in order to implement soil reclamation strategies. Land Degrad Dev 22:565–585

    Article  Google Scholar 

  • Carney JWG, Chambers SM (1997) Interactions between Pisolithus tinctorius and its hosts: a review of current knowledge. Mycorrhiza 7:117–131

    Article  Google Scholar 

  • Catsky J (1960) Determination of water deficit in discs cut out from leaf blades. Biol Plant 2:76–77

    Article  CAS  Google Scholar 

  • Colpaert JV, Van Laere A, Van Assche JA (1996) Carbon and nitrogen allocation in ectomycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings. Tree Physiol 16:787–793

    Article  PubMed  CAS  Google Scholar 

  • Costa A, Pereira H, Madeira M (2010) Analysis of spatial patterns of oak decline in cork oak woodlands in Mediterranean conditions. Ann For Sci 67:204

    Article  Google Scholar 

  • Di Castri F (1981) Mediterranean-type shrublands of the world. In: Di Castri F, Goodall DW, Specht RL (eds) Mediterranean-type shrublands. Elsevier, Amsterdam, pp 1–52

    Google Scholar 

  • Dickie IA, Montgomery RA, Reich PB, Schnitzer SA (2007) Physiological and phenological responses of oak seedlings to oak forest soil in the absence of trees. Tree Physiol 27:133–140

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Liang Y, Legendre P, He X, Pei K, Du X, Ma K (2011) Diversity and composition of ectomycorrhizal community on seedling roots: the role of host preference and soil origin. Mycorrhiza 21:669–680

    Article  PubMed  Google Scholar 

  • Duñabeitia MK, Hormilla S, Garcia-Plazaola JI, Txarterina K, Arteche U, Becerril JM (2004) Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza 14:11–18

    Article  PubMed  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of Ca plants. Oecologia 78:9–19

    Article  Google Scholar 

  • Fini A, Frangi P, Amoroso G, Piatti R, Faoro M, Bellasio C, Ferrini F (2011) Effect of controlled inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes. Mycorrhiza 21:703–719

    Article  PubMed  Google Scholar 

  • Garcia AN, Árias SPB, Morte A, Sánchez-Blanco MJ (2011) Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants. Mycorrhiza 21:53–64

    Article  Google Scholar 

  • Garcia-Plazaola JI, Faria T, Abadia J, Abadia A, Chaves MM, Pereira JS (1997) Seazonal changes in xantophyll composition and photosynthesis of cork oak (Quercus suber L.) leaves under Mediterranean climate. J Exp Bot 314:1667–1674

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 849–940

    Google Scholar 

  • Karpati AS, Handel SN, Dighton J, Horton TR (2011) Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests. Mycorrhiza 21:537–547

    Article  PubMed  Google Scholar 

  • Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 2:71–90

    Article  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzimol 148:350–382

    Article  CAS  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathol 59:153–163

    Google Scholar 

  • Marx DH, Marrs LF, Cordell CE (2002) Practical use of the mycorrhizal fungal technology in forestry, reclamation, arboriculture, agriculture, and horticulture. Dendrobiology 47:27–40

    Google Scholar 

  • Morte A, Diaz G, Rodriguez P, Alarcon JJ, Sanchez-Blanco MJ (2001) Growth and water relations in mycorrhizal and nonmycorrhizal Pinus halepensis plants in response to drought. Biol Plant 44:263–267

    Article  Google Scholar 

  • Núñez JAD, Serrano JS, Barreal JAR, Gonzalez JASO (2006) The influence of mycorrhization with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. For Ecol Manag 231:226–233

    Article  Google Scholar 

  • Quoreshi AM, Khasa DP (2008) Effectiveness of mycorrhizal inoculation in the nursery on root colonization, growth, and nutrient uptake of aspen and balsam poplar. Biomass Bioenerg 32:381–391

    Article  CAS  Google Scholar 

  • Rincón A, Priha O, Lelu-Walter MA, Bonnet M, Sotta B, Le Tacon F (2005) Shoot water status and ABA responses of transgenic hybrid larch Larix kaempferi× L. decidua to ectomycorrhizal fungi and osmotic stress. Tree Physiol 25:1101–1108

    Article  PubMed  Google Scholar 

  • Rodrigues CI, Maia R, Máguas C (2010) Comparing total nitrogen and crude protein content of green coffee beans (coffea spp.) from different geographical origins. Coffee Sci 5:197–205

    Google Scholar 

  • Rutigliano FA, Castaldi S, D’Ascoli R, Papa S, Carfora A, Marzaioli R, Fioretto A (2009) Soil activities related to nitrogen cycle under three plant cover types in Mediterranean environment. App Soil Ecol 43:40–46

    Article  Google Scholar 

  • Smith S, Read D (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Southworth D, Carrington EM, Frank JL, Gould P, Harrington CA, Devine WD (2009) Mycorrhizas on nursery and field seedlings of Quercus garryana. Mycorrhiza 19:149–158

    Article  PubMed  Google Scholar 

  • Timmer VR, Armstrong G (1989) Growth and nutrition of containerized Pinus resinosa seedlings at varying moisture regime. New For 3:171–180

    Article  Google Scholar 

  • Turgeman T, Asher JB, Roth-Bejerano N, Kagan-Zur V, Kapulnik Y, Sitrit Y (2011) Mycorrhizal association between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum alters plant physiology and fitness to arid conditions. Mycorrhiza 21:623–630

    Article  PubMed  CAS  Google Scholar 

  • Vaz M, Pereira JS, Gazarini LC, David TS, David JS, Rodrigues A, Maroco J, Chaves MM (2010) Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber). Tree Physiol 30:946–956

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  PubMed  CAS  Google Scholar 

  • Wu T (2011) Can ectomycorrhizal fungi circumvent the nitrogen mineralization for plant nutrition in temperate forest ecosystems? Soil Biol Biochem 43:1109–1117

    Article  CAS  Google Scholar 

  • Yaalon DH (1997) Soils in the Mediterranean region: what makes them different? Catena 28:157–169

    Article  CAS  Google Scholar 

  • Zhang J, Schurr U, Davies WJ (1987) Control of stomatal behavior by abscisic acid which apparently originates in roots. J Exp Bot 38:1174–1181

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Foundation (FCT), Portugal, project PTDC/AGR-AAM/105531/2008 and the Center for Biodiversity, Functional & Integrative Genomics (BioFIG, Portugal). Sebastiana M has a postdoctoral grant awarded by the Science and Technology Foundation (FCT), Portugal. Alcântara A has a master grant awarded by the Science and Technology Foundation (FCT), Portugal. We are very grateful to Paulo Bessa (Corticeira Amorim S. A.) for support for this study. Our special thanks to Pedro Silveira (Herdade do Azinhal, Portugal) for managing the seedlings in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Sebastiana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebastiana, M., Pereira, V.T., Alcântara, A. et al. Ectomycorrhizal inoculation with Pisolithus tinctorius increases the performance of Quercus suber L. (cork oak) nursery and field seedlings. New Forests 44, 937–949 (2013). https://doi.org/10.1007/s11056-013-9386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-013-9386-4

Keywords

Navigation