New Forests

, Volume 44, Issue 5, pp 719–732 | Cite as

The role of nutrients for improving seedling quality in drylands



Forest plantations have been extensively used to combat desertification. In drylands, harsh climate conditions and unfertile soils often preclude seedling establishment. The improvement in seedling quality by manipulating nutrient availability could contribute to increase planting success. However, morpho-functional traits defining optimum seedling quality in drylands, and the fertilization schemes to achieve them, are still under discussion. Several studies suggest that well fertilized seedlings may perform better than nutrient limited seedlings in these environments. However, recent works have shown opposite results. In this review, we discuss the concept of seedling quality in drylands based on an evaluation of the effects of nutrient manipulation on seedling morpho-functional traits and field performance. According to existing data, we hypothesize that nutrient-limited small seedlings may be better adapted to arid environments and unfavorable microsites, where access to water is uncertain and a conservative water use strategy may be advantageous. In contrast, in dry sub-humid areas, areas with deep soils, protected from excess radiation, and areas where irrigation is feasible, well-fertilized big seedlings with high root growth potential may have more chances of success. We discuss this theory in the context of the multiple objectives of dryland restoration and the environmental constrains posed by these areas, and identify knowledge gaps that should be targeted to test our hypothesis.


Nursery fertilization Forest plantation Ecological restoration Nutrient deficiency Morpho-functional traits 



This paper summarizes research funded by the European Commission (FUME-GA243888, CREOAK-QLRT-2001-01594), the Spanish Ministries of Science and Innovation (GRACCIE-CSD2007-00067, CONSOLIDER-INGENIO 2010 Program, LORAIN-AGL2008-05532-C02-02, SURVIVE-CGL-2011-30531-CO2-02), Economy and Competitivity (UNCROACH-CGL2011-30581-C02-01) and Environment (RECUVES—077/RN08/04.1; ESTRES, 063/SGTB/2007/7.1), and by the Regional Government of Valencia (FEEDBACKS-PROMETEO/2009/006). We thank the Forest Service in Alicante (Conselleria de Infraestructuras, Territorio y Medio Ambiente, Regional Government of Valencia) for their enduring assistance. Fundación CEAM is supported by Generalitat Valenciana.


  1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684CrossRefGoogle Scholar
  2. Amponsah IG, Lieffers VJ, Comeau PG, Brockley RP (2004) Growth response and sapwood hydraulic properties of young lodgepole pine following repeated fertilization. Tree Physiol 24:1099–1108PubMedCrossRefGoogle Scholar
  3. Andersen CP, Sucoff EI, Dixon RK, Markhart AH III (1989) Effects of phosphorus deficiency on root hydraulic conductivity in Fraxinus pennsylvanica. Can J Bot 67:472–476CrossRefGoogle Scholar
  4. Aranda I, Castro L, Pardos M, Gil L, Pardos JA (2005) Effects of the interaction between drought and shade on water relations, gas exchange and morphological traits in cork oak (Quercus suber L.) seedlings. For Ecol Manag 210:117–129CrossRefGoogle Scholar
  5. Armas C, Ordiales R, Pugnaire F (2004) Measuring plant interactions: a new comparative index. Ecology 85:2682–2686CrossRefGoogle Scholar
  6. Barigah TS, Ibrahim T, Bogard A, Faivre-Vuillin B, Lagneau LA, Montpied P, Dreyer E (2006) Irradiance-induced plasticity in the hydraulic properties of saplings of different temperate broad-leaved forest tree species. Tree Physiol 26:1505–1516PubMedCrossRefGoogle Scholar
  7. Birch JC, Newton AC, Alvarez-Aquino C, Cantarello E, Echeverría C, Kitzberger T, Schiappacasse I, Tejedor-Garavito N (2010) Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services. Proc Natl Acad Sci 107:21925–21930PubMedCrossRefGoogle Scholar
  8. Bloom AJ, Chapin FS III, Mooney HA (1985) Resource limitation in plants-an economic analogy. Annu Rev Ecol System 16:363–392Google Scholar
  9. Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Franco AC, Campanello PI, Villalobos-Vega R, Bustamante M, Miralles‐Wilhelm F (2006) Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. Plant Cell Environ 29:2153–2167PubMedCrossRefGoogle Scholar
  10. Burdett AN (1990) Physiological processes in plantation establishment and the development of specifications for forest planting stock. Can J For Res 20:415–427CrossRefGoogle Scholar
  11. Chirino E, Vilagrosa A, Hernández EI, Matos A, Vallejo VR (2008) Effects of a deep container on morpho-functional characteristics and root colonization in Quercus suber L. seedlings for reforestation in Mediterranean climate. For Ecol Manag 256:779–785CrossRefGoogle Scholar
  12. Clearwater MJ, Meinzer FC (2001) Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees. Tree Physiol 21:683–690PubMedCrossRefGoogle Scholar
  13. Comas LH, Eissenstat DM (2002) Linking fine root traits to maximal potential growth rate among 11 mature temperate tree species. Funct Ecol 18:388–397CrossRefGoogle Scholar
  14. Corcuera L, Camarero JJ, Gil-Pelegrin E (2002) Functional groups in Quercus species derived from the analysis of pressure-volume curves. Trees 16:465–472CrossRefGoogle Scholar
  15. Cortina J, Navarro RM, Del Campo AD (2006) Evaluación del éxito de la reintroducción de especies leñosas en ambientes Mediterráneos. In: Cortina J, Peñuelas JL, Puértolas J, Vilagrosa A, y Savé R (coord) Calidad de planta forestal para la restauración en ambientes Mediterráneos. Estado actual de conocimientos. Organismo Autónomo Parques Nacionales, Ministerio de Medio Ambiente, Madrid, pp 11–29Google Scholar
  16. Cortina J, Amat B, Castillo V, Fuentes D, Maestre FT, Padilla F, Rojo L (2011) The restoration of plant cover in the semi-arid Iberian southeast. J Arid Environ 75:1377–1384CrossRefGoogle Scholar
  17. del Campo AD, Navarro RM, Ceacero CJ (2010) Seedling quality and field performance of commercial stocklots of containerized holm oak (Quercus ilex) in Mediterranean Spain: an approach for establishing a quality standard. New For 39:19–37CrossRefGoogle Scholar
  18. Derbel S, Cortina J, Chaieb M (2009) Acacia saligna plantation impact on soil surface properties and vascular plant species composition in central Tunisia. Arid Land Res Manag 23:28–46CrossRefGoogle Scholar
  19. Domec JC, Palmroth S, Ward E, Maier CA, Thérézien M, Oren RAM (2009) Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization. Plant Cell Environ 32:1500–1512PubMedCrossRefGoogle Scholar
  20. Domínguez MT, Aponte C, Pérez-Ramos IM, García LV, Villar R, Marañón T (2012) Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities. Plant Soil 357:407–424CrossRefGoogle Scholar
  21. Donovan LA, Maherali H, Caruso CM, Huber H, De Kroon H (2010) The evolution of the worldwide leaf economics spectrum. Trends Ecol Evol 26:88–95PubMedCrossRefGoogle Scholar
  22. Dregne HE, Chou NT (1992) Global desertification dimensions and costs. In: Dregne HE (ed) Degradation and restoration of arid lands. Texas Tech University, LubbockGoogle Scholar
  23. Ewers BE, Oren R, Sperry JS (2000) Influence of nutrient versus water supply on hydraulic architecture and water balance in Pinus taeda. Plant Cell Environ 23:1055–1066CrossRefGoogle Scholar
  24. Fuentes D, Valdecantos A, Llovet J, Cortina J, Vallejo VR (2010) Fine-tuning sewage sludge application to promote the establishment of Pinus halepensis seedlings. Ecol Eng 36:1213–1221CrossRefGoogle Scholar
  25. García Cano MF, Cortina J, De Luís M, Raventós J, Sánchez JR, González-Hidalgo JC (2000) Degradación del suelo asociada a la erosión en un aulagar quemado afectado por lluvia torrencial. Cuadernos de la SECF 9:145–154Google Scholar
  26. Gómez-Aparicio L, Pérez-Ramos IM, Mendoza I, Matías L, Quero JL, Castro J, Zamora R, Marañón T (2008) Oak seedling survival and growth along resource gradients in Mediterranean forests: implications for regeneration in current and future environmental scenarios. Oikos 117:1683–1699CrossRefGoogle Scholar
  27. Hacke UG, Plavcová L, Almeida-Rodriguez M, King-Jones S, Zhou W, Cooke JEK (2010) Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar. Tree Physiol 30:1016–1025PubMedCrossRefGoogle Scholar
  28. Harvey HP, Van Den Driessche R (1997) Nutrition, xylem cavitation and drought resistance in hybrid poplar. Tree Physiol 17:647–654PubMedCrossRefGoogle Scholar
  29. Hernández EI, Vilagrosa A, Luis VC, Llorca M, Chirino E, Vallejo VR (2009) Root hydraulic conductance, gas exchange and leaf water potential in seedlings of Pistacia lentiscus L. and Quercus suber L. grown under different fertilization and light regimes. Environ Exp Bot 67:269–276CrossRefGoogle Scholar
  30. Hernández EI, Vilagrosa A, Pausas JG, Bellot J (2010) Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecol 207:233–244CrossRefGoogle Scholar
  31. Ho MD, Rosas JC, Brown KM, Lynch JP (2005) Root architectural tradeoffs for water and phosphorus acquisition. Funct Plant Biol 32:737–748CrossRefGoogle Scholar
  32. Holmgren M, Scheffer M (2001) El Niño as a window of opportunity for the restoration of degraded arid ecosystems. Ecosystems 4:151–159CrossRefGoogle Scholar
  33. Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549CrossRefGoogle Scholar
  34. Hubbard RM, Ryan MG, Stiller V, Sperry JS (2001) Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell Environ 24:113–121CrossRefGoogle Scholar
  35. Jeddi K, Cortina J, Chaieb M (2009) Acacia salicina, Pinus halepensis and Eucalyptus occidentalis improve soil surface conditions in arid southern Tunisia. J Arid Environ 73:1005–1013CrossRefGoogle Scholar
  36. Jones CG, Lawton JH, Shachack M (1994) Organisms as ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  37. Jozsa LA, Middleton GR (1994) A discussion of wood quality attributes and their practical implications. Forintek Canada Corp. Western Laboratory, Special Publication No. SP-34, VancouverGoogle Scholar
  38. Lal R (2009) Soils and sustainable agriculture. A review. Agron Sustain Dev 28:57–64CrossRefGoogle Scholar
  39. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713PubMedCrossRefGoogle Scholar
  40. Larigauderie A, Richards JH (1994) Root proliferation characteristics of seven perennial arid-land grasses in nutrient-enriched microsites. Oecologia 99:102–111CrossRefGoogle Scholar
  41. Lovelock CE, Feller IC, McKee KL, Engelbrecht BMJ, Ball MC (2004) The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panama. Funct Ecol 18:25–33CrossRefGoogle Scholar
  42. Lovelock CE, Ball MC, Feller IC, Engelbrecht BMJ, Ewe ML (2006) Variation in hydraulic conductivity of mangroves: influence of species, salinity, and nitrogen and phosphorus availability. Physiol Plant 127:457–464CrossRefGoogle Scholar
  43. Luis VC, Puértolas J, Climent J, Peters J, González-Rodríguez ÁM, Morales D, Jiménez MS (2009) Nursery fertilization enhances survival and physiological status in Canary Island pine (Pinus canariensis) seedlings planted in semiarid environment. Eur J For Res 128:221–229CrossRefGoogle Scholar
  44. Luis VC, Llorca M, Chirino E, Hernández EI, Vilagrosa A (2010) Differences in morphology, gas exchange and root hydraulic conductance before planting in Pinus canariensis seedlings growing under different fertilization and light regimes. Trees 24:1143–1150CrossRefGoogle Scholar
  45. Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049PubMedCrossRefGoogle Scholar
  46. Lynch JP, Brown KM (2001) Topsoil foraging: an architectural adaptation to low phosphorus availability. Plant Soil 237:225–237CrossRefGoogle Scholar
  47. Maestre FT, Cortina J (2002) Spatial pattern of soil properties and vegetation in a Mediterranean semi-arid steppe. Plant Soil 241:279–291CrossRefGoogle Scholar
  48. Maestre FT, Cortina J, Bautista S, Bellot J, Vallejo VR (2003) Small-scale environmental heterogeneity and spatio-temporal dynamics of seedling establishment in a semiarid degraded ecosystem. Ecosystems 6:630–643CrossRefGoogle Scholar
  49. Marino G, Aqil M, Shipley B (2010) The leaf economics spectrum and the prediction of photosynthetic light-response curves. Funct Ecol 24:263–272CrossRefGoogle Scholar
  50. McCormack ML, Adams TS, Smithwick EAH, Eissenstat DM (2012) Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol 195:823–831CrossRefGoogle Scholar
  51. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez E (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739PubMedCrossRefGoogle Scholar
  52. Mediavilla S, Escudero A (2004) Stomatal responses to drought of mature trees and seedlings of two co-occurring Mediterranean oaks. For Ecol Manag 187:281–294CrossRefGoogle Scholar
  53. Medrano H, Flexas J, Galmés J (2008) Variability in water use efficiency at the leaf level among Mediterranean plants with different growth forms. Plant Soil 317:17–29CrossRefGoogle Scholar
  54. Meziane D, Shipley B (1999) Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant Cell Environ 22:447–459CrossRefGoogle Scholar
  55. Meziane D, Shipley B (2001) Direct and indirect relationships between specific leaf area, leaf nitrogen and leaf gas exchange. Effects of irradiance and nutrient supply. Ann Bot 88:915–927CrossRefGoogle Scholar
  56. Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-being: desertification synthesis. World Resources Institute, WashingtonGoogle Scholar
  57. Mommer L, Weemstra M (2012) The role of roots in the resource economics spectrum. New Phytol 195:725–727PubMedCrossRefGoogle Scholar
  58. Nardini A, Tyree MT (1999) Root and shoot hydraulic conductance of seven Quercus species. Ann For Sci 56:371–377CrossRefGoogle Scholar
  59. Navarro RM, Villar P, del Campo A (2006) Morfología y establecimiento de los plantones. In: Cortina J, Peñuelas JL, Puértolas J, Savé R, Vilagrosa A (coord) Calidad de Planta Forestal para la Restauración en Ambientes Mediterráneos. Estado Actual de Conocimientos. Organismo Autónomo Parques Nacionales, Ministerio de Medio Ambiente, Serie Forestal, Madrid, pp 67–88Google Scholar
  60. Nicotra AB, Babicka N, Westoby M (2002) Seedling root anatomy and morphology: an examination of ecological differentiation with rainfall using phylogenetically independent contrasts. Oecologia 130:136–145Google Scholar
  61. Oddo E, Inzerillo S, La Bella F, Grisafi F, Salleo, S, Nardini A (2011) Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiol 31:131–138 Google Scholar
  62. Oliet JA, Jacobs DF (2012) Restoring forests: advances in techniques and theory. New For 43:535–541CrossRefGoogle Scholar
  63. Oliet JA, Planelles R, López M, Artero F (1997) Efecto de la fertilización en vivero sobre la supervivencia en plantación de Pinus halepensis Mill. Invest Agrar Sist Recur For 8:207–228Google Scholar
  64. Oliet JA, Valdecantos A, Puértolas J, Trubat R (2006) Influencia del estado nutricional y el contenido en carbohidratos en el establecimiento de las plantaciones. In: Cortina J, Peñuelas JL, Puértolas J, Savé R, Vilagrosa A (coord) Calidad de Planta Forestal para la Restauración en Ambientes Mediterráneos. Estado Actual de Conocimientos. Organismo Autónomo Parques Nacionales, Ministerio de Medio Ambiente, Serie Forestal, Madrid, pp 89–117Google Scholar
  65. Oliet JA, Planelles R, Artero F (2009) Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition. New For 37:313–331CrossRefGoogle Scholar
  66. Oliet JA, Artero F, Cuadros S, Puértolas J, Luna L, Grau JM (2012) Deep planting with shelters improves performance of different stocktype sizes under arid Mediterranean conditions. New For 43:925–939CrossRefGoogle Scholar
  67. Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn FM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442CrossRefGoogle Scholar
  68. Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol 27:1191CrossRefGoogle Scholar
  69. Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588PubMedCrossRefGoogle Scholar
  70. Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50PubMedCrossRefGoogle Scholar
  71. Radin JW, Matthews RA (1989) Water transport properties of cortical cells in roots of nitrogen- and phosphorus-deficient cotton seedlings. Plant Physiol 89:264–268PubMedCrossRefGoogle Scholar
  72. Reinbott TM, Blevins DG (1999) Phosphorus nutritional effects on root hydraulic conductance, xylem water flow and flux of magnesium and calcium in squash plants. Plant Soil 209:263–273CrossRefGoogle Scholar
  73. Requier-Desjardins M, Jauffret S, Ben Khatra N (2009) La lucha contra la desertificación. In: Terramed. Nuevas Perspectivas para el Desarrollo Rural en el Mediterráneo, CIHEAM and Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid, pp 153-201Google Scholar
  74. Rey Benayas JM, Newton AC, Diaz A, Bullock JM (2009) Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325:1121–1124PubMedCrossRefGoogle Scholar
  75. Salleo S, Lo Gullo MA (1990) Sclerophylly and plant water relations in three Mediterranean Quercus species. Ann Bot 65:259–270Google Scholar
  76. Samuelson LJ, Stokes T, Coleman MD (2007) Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides. Tree Physiol 27:765–774PubMedCrossRefGoogle Scholar
  77. Samuelson LJ, Farris MG, Stokes TA, Coleman MD (2008) Fertilization but not irrigation influences hydraulic traits in plantation-grown loblolly pine. For Ecol Manag 255:3331–3339CrossRefGoogle Scholar
  78. Singh DK, Sale PWG (2000) Growth and potential conductivity of white clover roots in dry soil with increasing phosphorus supply and defoliation frequency. Agron J 92:868–874CrossRefGoogle Scholar
  79. Squeo FA, Holmgren M, Jiménez M, Albán L, Reyes J, Gutiérrez JR (2007) Tree establishment along an ENSO experimental gradient in the Atacama desert. J Veg Sci 18:195–202CrossRefGoogle Scholar
  80. Trubat R, Cortina J, Vilagrosa A (2006) Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.). Trees 20:334–339CrossRefGoogle Scholar
  81. Trubat R, Cortina J, Vilagrosa A (2008) Short-term nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species. J Arid Environ 72:879–890CrossRefGoogle Scholar
  82. Trubat R, Cortina J, Vilagrosa A (2010) Nursery fertilisation affects seedling traits but not field performance in Quercus suber L. J Arid Environ 74:491–497CrossRefGoogle Scholar
  83. Trubat R, Cortina J, Vilagrosa A (2011) Nutrient deprivation improves field performance of woody seedlings in a degraded semi-arid shrubland. Ecol Eng 37:1164–1173CrossRefGoogle Scholar
  84. Trubat R, Cortina J, Vilagrosa A (2012) Root architecture and hydraulic conductance in nutrient deprived Pistacia lentiscus L. seedlings. Oecologia 170:899–908PubMedCrossRefGoogle Scholar
  85. Valdecantos A, Cortina J, Vallejo VR (2006) Nutrient status and field performance of tree seedlings planted in Mediterranean degraded areas. Ann For Sci 63:249–256CrossRefGoogle Scholar
  86. Vallejo VR, Allen EB, Aronson J, Pausas JG, Cortina J, Gutiérrez JR (2012a) Restoration of Mediterranean-type Woodlands and Shrublands. In: van Andel J, Aronson J (eds) Restoration ecology: the new frontier, 2nd edn. Wiley, Chichester, pp 130–144CrossRefGoogle Scholar
  87. Vallejo V, Smanis A, Chirino E, Fuentes D, Valdecantos A, Vilagrosa A (2012b) Perspectives in dryland restoration: approaches for climate change adaptation. New For 43:561–579CrossRefGoogle Scholar
  88. Vilagrosa A, Cortina J, Gil-Pelegrin E, Bellot J (2003a) Suitability of drought-preconditioning techniques in Mediterranean climate. Restor Ecol 11:208–216CrossRefGoogle Scholar
  89. Vilagrosa A, Vallejo VR, Bellot J, Gil-Pelegrín E (2003b) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54:2015–2024PubMedCrossRefGoogle Scholar
  90. Vilela AE, Rennella MJ, Ravetta DA (2003) Response of tree-type and shrub-type Prosopis (Mimosaceae) taxa to water and nitrogen availabilities. For Ecol Manag 186:327–337CrossRefGoogle Scholar
  91. Viles HA (ed) (1988) Biogeomorphology. Blackwell, OxfordGoogle Scholar
  92. Villar-Salvador P, Peñuelas JL, Jacobs DF (2012a) Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings. Tree Physiol 33:221–232CrossRefGoogle Scholar
  93. Villar-Salvador P, Puértolas J, Cuesta B, Peñuelas JL, Uscola M, Heredia-Guerrero N, Rey Benayas JM (2012b) Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New For 43:755–770CrossRefGoogle Scholar
  94. Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20:5–15PubMedCrossRefGoogle Scholar
  95. Walters MB, Reich PB (2000) Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade. Ecology 81:1887–1901CrossRefGoogle Scholar
  96. Ward EJ, Oren R, Sigurdsson BD, Jarvis PG, Linder S (2008) Fertilization effects on mean stomatal conductance are mediated through changes in the hydraulic attributes of mature Norway spruce trees. Tree Physiol 28:579–596PubMedCrossRefGoogle Scholar
  97. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827PubMedCrossRefGoogle Scholar
  98. Wu C, Wei X, Sun HL, Wang ZQ (2005) Phosphate availability alters lateral root anatomy and root architecture of Fraxinus mandshurica Rupr. seedlings. J Integr Plant Biol 47:292–301CrossRefGoogle Scholar
  99. Yaalon DH (1997) Soils in the Mediterranean region: what makes them different. Catena 28:157–169CrossRefGoogle Scholar
  100. Zhu J, Ingram PA, Benfey PN, Elich T (2011) From lab to field, new approaches to phenotyping root system architecture. Curr Opin Plant Biol 14:310–317PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jordi Cortina
    • 1
  • Alberto Vilagrosa
    • 2
  • Roman Trubat
    • 1
  1. 1.Department of Ecology (Joint Research Unit University of Alicante-CEAM), Multidisciplinary Institute for Environmental StudiesUniversity of AlicanteAlicanteSpain
  2. 2.Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM)Joint Research Unit University of Alicante-CEAMAlicanteSpain

Personalised recommendations