New Forests

, Volume 44, Issue 4, pp 577–589 | Cite as

Growth response, phosphorus content and root colonization of Polylepis australis Bitt. seedlings inoculated with different soil types

  • Florencia Soteras
  • Daniel Renison
  • Alejandra G. Becerra


Polylepis forests are one of the most endangered high mountain ecosystems of South America and reforestation with native Polylepis species has been highly recommended. Greenhouse bioassays were set up to determine the influence of three different soils on growth and phosphorous nutrition of Polylepis australis seedlings. Soils were collected from a grassland, a rare mature forest and a forest degraded due to repeated fires. We identified the arbuscular mycorrhizal fungi (AMF) present in the three soils and after 12 months we harvested the seedlings to evaluate root and shoot biomass, plant P content and root colonization by native AMF and dark septate endophytes (DSE). The soil inocula contained 26 AMF morphospecies. Grassland inoculum showed the highest AMF richness, and mature forest showed a different AMF community assembly from grassland and degraded forest inocula. Root biomass and root colonization were highest in seedlings inoculated with mature forest soil, meanwhile shoot biomass and plant P content were similar between all treatments. AMF colonization correlated negatively with DSE and root biomass was negatively correlated with DSE colonization, thus these fungal symbionts could be competing for resources. Our results indicate that AMF inoculum from the mature forest stand has the potential to improve P. australis performance, probably due to the dominance of Glomeraceae and Acaulosporaceae families. However, other soil microorganisms could be together with AMF in the natural inocula, affecting the growth response of P. australis seedlings. Future studies evaluating the effect of these inocula under field conditions should be carried out.


Arbuscular mycorrhizal fungi Dark septate endophytes Mountain forest Natural soil inocula 



Arbuscular mycorrhizal fungi


Dark septate endophytes







This work was financially supported by Agencia de Promoción Científica y Tecnológica—PICT 438-2008, Consejo Nacional de Investigaciones Científicas y Técnicas—PIP 0269 and Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba (SECyT-UNC) Res Nº 162/12. We are very grateful to M. N. Cabello and G. Grilli for the constructive suggestions made on our manuscript. F.S. is grateful to CONICET for providing her fellowship. A.B. and D.R. are researchers of CONICET.


  1. Allen EB, Allen MF, Egerton-Warburton L, Corkidi L, Gómez-Pompa A (2003) Impacts of early- and late-seral mycorrhizae during restoration in seasonal tropical forest. Ecol Appl 13:1701–1717CrossRefGoogle Scholar
  2. Asbjornsen H, Montagnini F (1994) Vesicular-arbuscular mycorrhizal inoculum potential affects the growth of Stryphnodendron microstachyum seedlings in a Costa Rican human tropical lowland. Mycorrhiza 5:45–51CrossRefGoogle Scholar
  3. Cabido M (1985) Las comunidades vegetales de Pampa de Achala, Sierras de Córdoba, Argentina. Doc Phytosociol 9:431–443Google Scholar
  4. Cingolani AM, Cabido M, Renison D, Solís Neffa V (2003) Combined effects of environment and grazing on vegetation structure in Argentine granite grasslands. J Veg Sci 14:223–232CrossRefGoogle Scholar
  5. Cingolani AM, Renison D, Tecco PA, Gurvich DE, Cabido M (2008) Predicting cover types in a mountain range with long evolutionary grazing history: a GIS approach. J Biogeogr 35:538–551CrossRefGoogle Scholar
  6. Cuenca G, Andrade ZD, Lovera M, Fajardo L, Meneses E (2004) The effect of two arbuscular mycorrhizal inocula of contrasting richness and the same mycorrhizal potential on the growth and survival of wild plant species from La Gran Sabana, Venezuela. Can J Bot 82:582–589CrossRefGoogle Scholar
  7. Ellenberg H (1979) Man’s influence on tropical mountain ecosystems in South America. J Ecol 67:401–416CrossRefGoogle Scholar
  8. Fjeldså J, Kessler M (1996) Conserving the biological diversity of Polylepis woodlands of the highland of Peru and Bolivia. A contribution to sustainable natural resource management in the Andes, Nordeco, p 250Google Scholar
  9. Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162CrossRefGoogle Scholar
  10. Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344CrossRefGoogle Scholar
  11. Hart MM, Reader RJ, Klironomos JN (2001) Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93:1186–1194CrossRefGoogle Scholar
  12. Haselwandter K, Read DJ (1980) Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia 45:57–62CrossRefGoogle Scholar
  13. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585CrossRefGoogle Scholar
  14. Jones JB, Wolf B, Mills HA (1991) Plant analysis handbook. A practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Publishing, Inc, Athens, p 213Google Scholar
  15. Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal? Mycorrhiza 11:207–211CrossRefGoogle Scholar
  16. Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310CrossRefGoogle Scholar
  17. Kessler M, Schmidt-Lebuhn AN (2006) Taxonomical and distributional notes on Polylepis (Rosaceae). Org Divers Evol 6:1–10CrossRefGoogle Scholar
  18. Kiers ET, Lovelock CE, Krueger EL, Herre EA (2000) Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecol Lett 3:106–113CrossRefGoogle Scholar
  19. Lopes Leal P, Stürmer SL, Siqueira JO (2009) Ocurrence and diversity of arbuscular mycorrhizal fungi in trap cultures from soils under different land use systems in the Amazon, Brazil. Braz J Microbiol 40:111–121CrossRefGoogle Scholar
  20. Lugo M, González Maza ME, Cabello MN (2003) Arbuscular mycorrhizal fungi in a mountain grassland II: seasonal variation of colonization studied, along with its relation to grazing and metabolic host type. Mycologia 95:407–415PubMedCrossRefGoogle Scholar
  21. Magurran AE (1988) Ecological diversity and its measurement. Princenton, USA, p 160CrossRefGoogle Scholar
  22. Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748PubMedCrossRefGoogle Scholar
  23. Maron JL, Marler M, Klironomos JN, Cleveland CC (2011) Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol Lett 14:36–41PubMedCrossRefGoogle Scholar
  24. Martino J, Urcelay C, Renison D (2011) Crecimiento y colonización micorrícica de Polylepis australis Bitter (Rosaceae) en suelos con distinta historia de pastoreo. Kurtziana 36:69–77Google Scholar
  25. McGonigle TP, Miller M, Evans DG, Fairchild GL, Swan JA (1990) A method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  26. Medina-Roldán E, Arredondo JT, Huber-Sannwald E, Chapa-Vargas L, Olalde-Portugal V (2008) Grazing effects on fungal root symbionts and carbon and nitrogen storage in a shortgrass steppe in Central Mexico. J Arid Environ 72:546–556CrossRefGoogle Scholar
  27. Menoyo E, Becerra AG, Renison D (2007) Mycorrhizal associations in Polylepis woodlands of Central Argentina. Can J Bot 85:526–531CrossRefGoogle Scholar
  28. Menoyo E, Renison D, Becerra AG (2009) Arbuscular mycorrhizas and performance of Polylepis australis trees in relation to livestock density. For Ecol Manag 258:2676–2682CrossRefGoogle Scholar
  29. Neumann E, Eckhard G (2010) Nutrient uptake: the arbuscular mycorrhiza fungal symbiosis as a plant nutrient acquisition strategy. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer Netherlands, pp 137–167Google Scholar
  30. Oehl F, Sieverding E, Ineichen K, Mäder P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agric Ecosyst Environ 134:257–268CrossRefGoogle Scholar
  31. Omar MB, Bolland L, Heather WA (1979) P.V.A. (polivinil alcohol). A permanent mounting medium for fungi. Bull Br Mycol Soc 13:31–32CrossRefGoogle Scholar
  32. Opik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790CrossRefGoogle Scholar
  33. Opik M, Moora M, Zobel M, Saks U, Wheatley R, Wright F, Daniell T (2008) High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytol 179:867–876PubMedCrossRefGoogle Scholar
  34. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  35. Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139PubMedCrossRefGoogle Scholar
  36. Renison D, Cingolani AM, Suarez R, Menoyo E, Coutsiers C, Sobral A, Hensen I (2005) The restoration of degraded mountain woodlands: effects of seed provenance and microsite characteristics on Polylepis australis seedling survival and growth in Central Argentina. Restor Ecol 13:129–137CrossRefGoogle Scholar
  37. Renison D, Hensen I, Suarez R, Cingolani AM, Marcora P, Giorgis MA (2010) Soil conservation in Polylepis mountain forests of Central Argentina: is livestock reducing our natural capital? Austral Ecol 35:435–443CrossRefGoogle Scholar
  38. Renison D, Hensen I, Suarez R (2011) Landscape structural complexity of high-mountain Polylepis australis forests: a new aspect of restoration goals. Restor Ecol 19:390–398CrossRefGoogle Scholar
  39. Scervino JM, Gottlieb A, Silvani VA, Pérgola M, Fernández L, Godeas AM (2009) Exudates of dark septate endophyte (DSE) modulate the development of the arbuscular mycorrhizal fungus (AMF) Gigaspora rosea. Soil Biol Biochem 41:1753–1756CrossRefGoogle Scholar
  40. Schenk NC, Perez Y (1990) Manual of identification of vesicular-arbuscular mycorrhizal fungi. Gainesville, USA, p 286Google Scholar
  41. Seltmann L, Renison D, Hensen I (2006) Variation of seed mass and its effects on germination in Polylepis australis: implications for seed collection. New For 33:171–181CrossRefGoogle Scholar
  42. Smith SE, Read D (2008) Mycorrhizal symbiosis. Academic Press, Great BritainGoogle Scholar
  43. Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524CrossRefGoogle Scholar
  44. Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057PubMedCrossRefGoogle Scholar
  45. Uibopuu A, Moora M, Saks Ü, Daniell T, Zobel M, Öpik M (2009) Differential effect of arbuscular mycorrhizal fungal communities from ecosystems along management gradient on the growth of forest understorey plant species. Soil Biol Biochem 41:2141–2146CrossRefGoogle Scholar
  46. Urgiles N, Loján P, Aguirre N, Blaschke H, Günter S, Stimm B, Kottke I (2009) Application of mycorrhizal roots improves growth of tropical tree seedlings in the nursery: a step towards reforestation with native species in the Andes of Ecuador. New For 38:229–239CrossRefGoogle Scholar
  47. van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310PubMedCrossRefGoogle Scholar
  48. Walker C, Mize W, McNabb HS (1982) Populations of endogonaceous fungi at two populations in central Iowa. Can J Bot 60:2518–2529CrossRefGoogle Scholar
  49. Wardle DA (2006) The influence of biotic interactions on soil biodiversity. Ecol Lett 9:870–886PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Florencia Soteras
    • 1
  • Daniel Renison
    • 2
  • Alejandra G. Becerra
    • 1
  1. 1.Laboratorio de Micología, Instituto Multidisciplinario de Biología Vegetal (IMBIV)-CONICET, FCEFyNUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Centro de Ecología y Recursos Naturales Renovables “Dr Ricardo Luti” (CERNAR), FCEFyNUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations