New Forests

, Volume 44, Issue 4, pp 533–546 | Cite as

Enrichment planting of Picea glauca in boreal mixedwoods: can localized site preparation enhance early seedling survival and growth?

  • Nelson Thiffault
  • Daniel Chalifour
  • Louis Bélanger


Conserving forest biodiversity has become a significant global concern. A change in forest composition, compared to pre-industrial values, is an important biodiversity issue. In this regard, there is a significant decrease in Picea glauca densities at the landscape level in boreal mixedwoods of northeastern Canada, compared to pre-industrial abundance. Enrichment planting is considered a promising silvicultural approach for improving P. glauca stocking and re-establishing its natural co-dominance with Abies balsamea. However, optimal enrichment scenarios must be identified, notably regarding site preparation treatments that can enhance planted seedling survival and growth while protecting Abies advance regeneration. We established a field trial in Quebec (Canada), laid out as a complete block split-plot design. Picea glauca and P. mariana seedlings (main plot) were planted according to 3 “microsite” treatments (subplot): (1) planting in the humus layer; (2) planting in the mineral soil, with minimal humus disturbance; and (3) planting in a microsite mechanically-prepared using modified brushsaws. After 3 growing seasons, P. mariana seedlings were taller than P. glauca seedlings, but had smaller ground-level diameters. Seedlings planted in the mineral soil had overcome the initial height difference they had with seedlings planted in the humus and mechanically-prepared microsites, with no interaction with species. Ground-level diameter was similar for seedlings planted in the humus and mechanically-prepared microsites, but smaller for seedlings planted in the mineral soil. Water potentials, available light, and foliar nutrient concentrations were not influenced by treatments or species; survival was >90 %. Our results indicate that P. glauca can be established through enrichment planting in boreal mixedwoods. Localized site preparation is not required to limit initial plantation stress in this ecosystem.


White spruce Ecosystem-based management Boreal mixedwoods Microsite Reforestation Silviculture 



We are indebted to Martine Lapointe, Dominic Létourneau, Steve Lemay, Jacques Carignan, Julie Faure-Lacroix, Olivier Norvèz, Paméla Garcia Cournoyer, Claude Lefrançois, Marc Lebel-Racine, Maïté Brémont and Sophie Thériault for their help in fieldwork. We thank Hugues Sansregret, Julie Bouliane and Martin Charest for their kind collaboration to the project, Sylvie Carles for insightful discussions, and the staff members of the Laboratoire de chimie organique et inorganique, Direction de la recherche forestière, Ministère des Ressources naturelles du Québec (DRF-MRN), who conducted all the chemical analyses. We thank Jean-Claude Ruel, François Marquis and 2 anonymous reviewers for their comments on an early version of this manuscript. Funding for this project was provided by the Fonds québécois de la recherche sur la nature et les technologies (Action concertéeAménagement et environnement forestier III), with the kind collaboration of the DRF-MRN.


  1. Ashton MS, Gunatilleke CV, Singhakumara BM, Gunatilleke IAU (2001) Restoration pathways for rain forest in southwest Sri Lanka: a review of concepts and models. For Ecol Manage 154(3):409–430CrossRefGoogle Scholar
  2. Bannan MW (1940) The root systems of Northern Ontario conifers growing in sand. Am J Bot 27(2):108–114CrossRefGoogle Scholar
  3. Bassman JH (1989) Influence of two site preparation treatments on ecophysiology of planted Picea engelmannii × glauca seedlings. Can J For Res 19(11):1359–1370CrossRefGoogle Scholar
  4. Boateng JO, Heineman JL, Bedford L, Nemec AFL (2010) Twenty-year effects of mechanical site preparation and windrow burning treatments on soil properties and Pinus contorta var. latifolia nutrition in sub-boreal British Columbia. Scand J For Res 25(6):515–533CrossRefGoogle Scholar
  5. Boateng JO, Heineman JL, Bedford L, Nemec AFL (2011) Soil characteristics and lodgepole pine (Pinus contorta var. latifolia) performance two decades after disk trenching of unburned and broadcast-burned plots in subboreal British Columbia. Int J For Res. doi: 10.1155/2011/752359
  6. Boucher Y, Arseneault D, Sirois L, Blais L (2009) Logging pattern and landscape changes over the last century at the boreal and deciduous forest transition in Eastern Canada. Landsc Ecol 24(2):171–184CrossRefGoogle Scholar
  7. Brand DG (1991) The establishment of boreal and sub-boreal conifer plantations: an integrated analysis of environmental conditions and seedling growth. For Sci 37(1):68–100Google Scholar
  8. Bunnell FL, Houde I (2010) Down wood and biodiversity—implications to forest practices. Environ Rev 18(NA):397–421Google Scholar
  9. Burdett AN (1990) Physiological processes in plantation establishment and the development of specifications for forest planting stock. Can J For Res 20(4):415–427CrossRefGoogle Scholar
  10. Burgess D, Adams G, Needham T, Robinson C, Gagnon R (2010) Early development of planted spruce and pine after scarification, fertilization and herbicide treatments in New Brunswick. For Chron 86(4):444–454Google Scholar
  11. Côté S, Bélanger L (1991) Variations de la régénération préétablie dans les sapinières boréales en fonction de leurs caractéristiques écologiques. Can J For Res 21(12):1779–1795CrossRefGoogle Scholar
  12. Desponts M, Brunet G, Bélanger L, Bouchard M (2004) The eastern boreal old-growth balsam fir forest: a distinct ecosystem. Can J Bot 82(6):830–849CrossRefGoogle Scholar
  13. Duvall MD, Grigal DF (1999) Effects of timber harvesting on coarse woody debris in red pine forests across the Great Lakes states, USA. Can J For Res 29(12):1926–1934CrossRefGoogle Scholar
  14. Environment Canada (2010) Archives nationales d’information et de données climatologiques. Available online
  15. Greene DF, Zasada J, Sirois L, Kneeshaw DD, Morin H, Charron I, Simard MJ (1999) A review of the regeneration dynamics of North American boreal forest tree species. Can J For Res 29(6):824–839CrossRefGoogle Scholar
  16. Greene DF, Kneeshaw DD, Messier C, Lieffers V, Cormier D, Doucet R, Coates KD, Groot A, Grover G, Calogeropoulos C (2002) Modelling silvicultural alternatives for conifer regeneration in boreal mixedwood stands (aspen/white spruce/balsam fir). For Chron 78(2):281–295Google Scholar
  17. Grossnickle SC (2000) Ecophysiology of Northern spruce species: the performance of planted seedlings. NRC Research Press, OttawaGoogle Scholar
  18. Grossnickle SC (2005) Importance of root growth in overcoming planting stress. New For 30(2):273–294CrossRefGoogle Scholar
  19. Grossnickle SC (2012) Why seedlings survive: influence of plant attributes. New For. doi: 10.1007/s11056-012-9336-6
  20. Grossnickle SC, Heikurinen J (1989) Site preparation: water relations and growth of newly planted jack pine and white spruce. New For 3(2):99–123CrossRefGoogle Scholar
  21. Harvey B, Brais S (2002) Effects of mechanized careful logging on natural regeneration and vegetation competition in the southeastern Canadian boreal forest. Can J For Res 32(4):653–666CrossRefGoogle Scholar
  22. Hatcher RJ (1960) Croissance du sapin baumier après une coupe rase dans le Québec. Ministère du nord canadien et des ressources nationales. Mémoire Technique no 87, Sainte-Foy, QCGoogle Scholar
  23. Hébert F, Boucher JF, Bernier PY, Lord D (2006) Growth response and water relations of 3-year-old planted black spruce and jack pine seedlings in site prepared lichen woodlands. For Ecol Manag 223(1–3):226–236CrossRefGoogle Scholar
  24. Jobidon R (1992) Measurement of light transmission in young conifer plantation: a technique for assessing herbicide efficacy. North J Appl For 9(3):112–115Google Scholar
  25. Jobidon R (1994) Light threshold for optimal black spruce (Picea mariana) seedlings growth and development under brush competition. Can J For Res 24(8):1629–1635CrossRefGoogle Scholar
  26. Jobidon R, Roy V, Cyr G (2003) Net effect of competing vegetation on selected environmental conditions and performance of four spruce seedling stock sizes after eight years in Québec (Canada). Ann For Sci 60(7):691–699CrossRefGoogle Scholar
  27. Krause C, Morin H (2005) Adventive-root development in mature black spruce and balsam fir in the boreal forests of Quebec, Canada. Can J For Res 35(11):2642–2654CrossRefGoogle Scholar
  28. Lamhamedi MS, Bernier PY (1994) Ecophysiology and field performance of black spruce (Picea mariana): a review. Ann For Sci 51(6):529–551CrossRefGoogle Scholar
  29. Lamhamedi MS, Bernier PY, Hébert C (1996) Effect of the shoot size on gas exchange and growth of containerized Picea mariana seedlings under different watering regimes. New For 13(1–3):207–221Google Scholar
  30. Lanner RM (1985) On the insensitivity of height growth to spacing. For Ecol Manag 13(3–4):143–148CrossRefGoogle Scholar
  31. Larsen HS, South DB, Boyer JM (1986) Root growth potential, seedling morphology and bud dormancy correlate with survival of loblolly pine seedlings planted in December in Alabama. Tree Physiol 1(3):253–263PubMedCrossRefGoogle Scholar
  32. Lindenmayer D, Hobbs RJ, Montague-Drake R, Alexandra J, Bennett A, Burgman M, Cale P, Calhoun A, Cramer V, Cullen P, Driscoll D, Fahrig L, Fischer J, Franklin J, Haila Y, Hunter M, Gibbons P, Lake S, Luck G, MacGregor C, McIntyre S, Nally RM, Manning A, Miller J, Mooney H, Noss R, Possingham H, Saunders D, Schmiegelow F, Scott M, Simberloff D, Sisk T, Tabor G, Walker B, Wiens J, Woinarski J, Zavaleta E (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11(1):78–91PubMedGoogle Scholar
  33. Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models. SAS Institute Inc., CaryGoogle Scholar
  34. Löf M, Dey DC, Navarro RM, Jacobs DF (2012) Mechanical site preparation for forest restoration. New For 43(5–6):825–848CrossRefGoogle Scholar
  35. Lundmark-Thelin A, Johansson MJ (1997) Influence of mechanical site preparation on decomposition and nutrient dynamics of Norway spruce (Picea abies (L.) Karst.) needle litter and slash needles. For Ecol Manag 96(1–2):101–110CrossRefGoogle Scholar
  36. Margolis HA, Brand DG (1990) An ecophysiological basis for understanding plantation establishment. Can J For Res 20(4):375–390CrossRefGoogle Scholar
  37. McKeague JA (1978) Manuel de méthodes d’échantillonnage et d’analyse des sols, 2nd edn. Société canadienne de la science du sol, OttawaGoogle Scholar
  38. Noguchi M, Yoshida T (2004) Tree regeneration in partially cut conifer–hardwood mixed forests in northern Japan: roles of establishment substrate and dwarf bamboo. For Ecol Manage 190(2–3):335–344CrossRefGoogle Scholar
  39. Örlander G (1986) Effect of planting and scarification on the water relations in planted seedlings of Scots pine. Faculty of Forestry, Swedish University of Agricultural Science. Studia Forestalia Suecica 173Google Scholar
  40. Örlander G, Gemmel P, Hunt J (1990) Site preparation: a Swedish overview. Forestry Canada and British Columbia Ministry of Forests. FRDA Report 105, Victoria, BCGoogle Scholar
  41. Östlund L, Zackrisson O, Axelsson AL (1997) The history and transformation of a Scandinavian boreal forest landscape since the 19th century. Can J For Res 27(8):1198–1206CrossRefGoogle Scholar
  42. Ouimet R, Arp PA, Watmough SA, Aherne J, Demerchant I (2006) Determination and mapping critical loads of acidity and exceedances for upland forest soils in Eastern Canada. Water Air Soil Pollut 172:57–66CrossRefGoogle Scholar
  43. Paquette A, Messier C (2010) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8(1):27–34CrossRefGoogle Scholar
  44. Paquette A, Girard JP, Walsh D (2011) Deep planting has no short- or long-term effect on the survival and growth of white spruce, black spruce and jack pine. North J Appl For 28(1):146–151Google Scholar
  45. Parkinson JA, Allen SE (1975) A wet oxydation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun Soil Sci Plant Anal 6(1):1–11CrossRefGoogle Scholar
  46. Querejeta JI, Roldan A, Albaladejo J, Castillo V (2001) Soil water availability improved by site preparation in a Pinus halepensis afforestation under semiarid climate. For Ecol Manage 149(1–3):115–128CrossRefGoogle Scholar
  47. Raymond P, Ruel JC, Pineau M (2000) Effet d’une coupe d’ensemencement et du milieu de germination sur la régénération des sapinières boréales riches de seconde venue du Québec. For Chron 76(4):643–652Google Scholar
  48. Ritchie GA, Hinckley TM (1975) The pressure chamber as an instrument for ecological research. Adv Ecol Res 9:165–254CrossRefGoogle Scholar
  49. Saucier JP, Grondin P, Robitaille A (2009) Cadre bioclimatique du Québec. In: Doucet R (ed) Écologie forestière, Manuel de foresterie, 2nd edn, Ordre des ingénieurs forestiers du Québec. Éditions Multimondes, Québec, pp 186–205Google Scholar
  50. Simard MJ, Bergeron Y, Sirois L (2003) Substrate and litterfall effects on conifer seedling survivorship in southern boreal stands of Canada. Can J For Res 33(4):672–681CrossRefGoogle Scholar
  51. Soil Classification Group (1998) The Canadian system of soil classification, 3rd edn. Agriculture and Agri-Food Canada, Publication 1646, Ottawa, ONGoogle Scholar
  52. Spittlehouse DL, Stathers RJ (1990) Seedling microclimate. British Columbia Ministry of Forests. Land Management Report 65, Victoria, BCGoogle Scholar
  53. St-Hilaire G (2011) L’enrichissement en épinette blanche à la forêt Montmorency, un traitement sylvicole intensif de restauration écosystémique dans la sapinière à bouleau blanc de l’est. M.Sc. Thesis, Faculté de foresterie, géographie et de géomatique, Université Laval, Québec, QCGoogle Scholar
  54. Swan HSD (1970) Relationships between nutrient supply, growth and nutrient concentrations in the foliage of black spruce and jack pine. Pulp and Paper Research Institute of Canada, Woodlands Paper 29, Montréal, QCGoogle Scholar
  55. Swan HSD (1971) Relationship between nutrient supply, growth and nutrient concentration in the foliage of white and red spruce. Pulp and Paper Research Intitute of Canada, Woodlands Paper 29, Montréal, QCGoogle Scholar
  56. Thiffault N, Roy V (2011) Living without herbicides in Québec (Canada): historical context, current strategy, research and challenges in forest vegetation management. Eur J For Res 130(1):117–133CrossRefGoogle Scholar
  57. Thiffault N, Jobidon R, Munson AD (2003) Performance and physiology of large containerized and bare-root spruce seedlings in relation to scarification and competition in Québec (Canada). Ann For Sci 60(7):645–655CrossRefGoogle Scholar
  58. Thiffault N, Titus BD, Munson AD (2005) Silvicultural options to promote seedling establishment on Kalmia-Vaccinium-dominated sites. Scand J For Res 20(2):110–121CrossRefGoogle Scholar
  59. Thiffault N, Titus BD, Moroni MT (2010) Silviculture and planted species interact to influence reforestation success on a Kalmia-dominated site—a 15-year study. For Chron 86(2):234–242Google Scholar
  60. Timmer VR (1991) Interpretation of seedling analysis and visual symptoms. In: Van Den Driessche R (ed) Mineral nutrition of conifer seedlings. CRC Press, BostonGoogle Scholar
  61. Timmer VR, Stone EL (1978) Comparative foliar analysis of young balsam fir fertilized with nitrogen, phosphorus, potassium, and lime. Soil Sci Soc Am J 42(1):125–130CrossRefGoogle Scholar
  62. Végiard S, Ung CH (1993) Statistical inference problems related to the logarithmic transformation in regression: another method for interval estimation. Can J For Res 23(5):871–872CrossRefGoogle Scholar
  63. Viereck LA, Johnston WF (1990) Picea mariana (Mill.) BSP. Sylvics of North America, vol 1, Conifers, Agriculture Handbook No. 654. USDA Forest Service, Washington, DCGoogle Scholar

Copyright information

© Crown Copyright as represented by the Government of Québec, Ministry of Natural Resources 2013

Authors and Affiliations

  • Nelson Thiffault
    • 1
    • 2
  • Daniel Chalifour
    • 2
  • Louis Bélanger
    • 2
  1. 1.Direction de la recherche forestièreMinistère des Ressources naturelles du QuébecQuébecCanada
  2. 2.Faculté de Foresterie, de Géographie et de Géomatique, Centre d’Étude de la ForêtUniversité LavalQuébecCanada

Personalised recommendations