Skip to main content

Advertisement

Log in

Ectomycorrhizal communities within beech (Fagus sylvatica L.) forests that naturally regenerate from clear-cutting in northern Spain

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

The objectives of the work described here were to evaluate the diversity of ectomycorrhizal (ECM) fungi within Spanish beech (Fagus sylvatica L.) forests subjected to clear-cutting and natural regeneration and to elucidate the extent to which the carbohydrate concentration in roots of trees of different ages and sizes is related to ECM colonization. The study concerned an unmanaged forest, a stand clear-cut in 1996 and another clear-cut in 2001. ECM colonization of beech roots showed seasonal dynamics in the disturbed areas, but the percentage of roots colonized by ECM was not always related to the accumulation of non-structural carbohydrates. The composition of ECM communities differed between different stands and 40% of ECM morphotypes only occurred in disturbed ecosystems. However, comparable numbers of different ECM morphotypes (24, 25) were found in the three beech stands. This finding indicates that ECM diversity was quite high and similar within disturbed and unmanaged areas. This finding suggests that (1) ECM diversity was not affected by the size and age of trees and (2) the potential of ECM inocula remained high within clear-cut areas. Consequently, the introduction of ECM inocula by silvicultural practices would not be needed to improve the regeneration of clear-cut areas described in our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Cen:

Cenococcum geophilum

ECM:

Ectomycorrhizal fungi

HC:

Hebeloma-Cortinarius

Rus:

Russula

Seb:

Sebacina

TA:

Tuber albidum

Thel:

Thelephoroid

Tom:

Tomentella

References

  • Agerer R (1986) Studies on Ectomycorrhizae II. Introducing remarks on characterization and identification. Mycotaxon 26:473–492

    Google Scholar 

  • Agerer R (1987–2002) Colour atlas of ectomycorrhizae. Einhorn-Verlag, Munich

  • Agerer R (1994) Characterization of ectomycorrhizas. In: Morris JR, Read D, Varma AK (eds) Techniques for mycorrhizal research. Methods in microbiology, vol 23. Academic Press, London, pp 25–73

    Google Scholar 

  • Agerer R (1999) Anatomical characteristics of identified Ectomycorrhizas: an attempt towards a natural classification. In: Varma A, Hock B (eds) Mycorrhiza. Structure, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin, pp 633–682

    Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114. doi:10.1007/s005720100108

    Article  Google Scholar 

  • Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5:67–107. doi:10.1007/s11557-006-0505-x

    Article  Google Scholar 

  • Agerer R, Gronbach E (1988) Cenococcum geophilum. In: Agerer R (ed) Colour atlas of ectomycorrhizae, plate 11. Einhorn Verlag, Schwäbisch Gmünd

    Google Scholar 

  • Avis PG, McLaughlin DJ, Dentinger BC, Reich PB (2003) Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytol 160:239–253. doi:10.1046/j.1469-8137.2003.00865.x

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–957. doi:10.1104/pp.124.3.949

    Article  PubMed  CAS  Google Scholar 

  • Barbour MG, Burk JH, Pitts WD, William FS, Schwartz MW (1999) Terrestrial plant ecology, 3rd edn. Benjamin/Cummings, CA

    Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Franson RL (1990) The Glycine-Glomus-Bradyrhizobium simbiosis. X. Relationships between leaf gas exchange and plant and soil water status in nodulated, mycorrhizal soybean under drought stress. Plant Physiol 94:723–728. doi:10.1104/pp.94.2.723

    Article  PubMed  Google Scholar 

  • Bird C, McCleneghan C (2005) Morphological and functional diversity of ectomycorrhizal fungi on Roan Mountain (NC/TN). Southeast Nat 4:121–132. doi:10.1656/1528-7092(2005)004[0121:MAFDOE]2.0.CO;2

    Article  Google Scholar 

  • Blaise T, Garbaye J (1983) Effets de la fertilization minérale sur les ectomycorhizes d’une hêtraie. Acta Oecol 18:165–169

    Google Scholar 

  • Bradbury SM (1998) Ectomycorrhizas of lodgepole pine (Pinus contorta) seedlings originating from seed in southwestern Alberta cut blocks. Can J Bot 76:213–217. doi:10.1139/cjb-76-2-213

    Article  Google Scholar 

  • Bradbury SM, Danielson RM, Visser S (1998) Ectomycorrhizas of regenerating stands of lodgepole pine (Pinus contorta). Can J Bot 76:218–227. doi:10.1139/cjb-76-2-218

    Article  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Buée M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus sylvatica) forest subjected to two thinning regimes. Mycorrhiza 15:235–245. doi:10.1007/s00572-004-0313-6

    Article  PubMed  Google Scholar 

  • Clavería V, de Miguel A (2006) Análisis de la comunidad ectomicorrícica de un carrascal de Navarra (España). Bull Soc Hist Nat Toulouse 141:997–1001

    Google Scholar 

  • Coleman MD, Bledsoe CS, Lopushinsky W (1989) Pure culture response of ectomycorrhizal fungi to imposed water stress. Can J Bot 67:29–39. doi:10.1139/b89-005

    Article  Google Scholar 

  • Courty P-E, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319. doi:10.1111/j.1469-8137.2005.01401.x

    Article  PubMed  CAS  Google Scholar 

  • de Román M, de Miguel AM (2005) Post-fire, seasonal and annual dynamics of the ectomycorrhizal community in a Quercus ilex L. forest over a 3-year period. Mycorrhiza 15:471–482. doi:10.1007/s00572-005-0353-6

    Article  PubMed  Google Scholar 

  • Douglas RB, Parker VT, Cullings KW (2005) Belowground ectomycorrhizal community structure of mature lodgepole pine and mixed conifer stands in Yellowstone National Park. For Ecol Manage 208:303–317. doi:10.1016/j.foreco.2004.12.011

    Article  Google Scholar 

  • Douhan GW, Rizzo DM (2005) Phylogenetic divergence in a local population of the ectomycorrhizal fungus Cenococcum geophilum. New Phytol 166:263–271. doi:10.1111/j.1469-8137.2004.01305.x

    Article  PubMed  CAS  Google Scholar 

  • Erice G, Irigoyen JJ, Sánchez-Díaz M, Avice JCH, Ourry A (2007) Effect of drought, elevated CO2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproot of nodulated alfalfa before and after cutting. Plant Sci 172:903–912. doi:10.1016/j.plantsci.2006.12.013

    Article  CAS  Google Scholar 

  • Frank K, Beegle D, Denning J (1998) Phosphorus. In: Brown (ed) Recommended chemical soil test procedures for the north central region. North Carolina Regional Research Publication No. 221 (revised). Missouri Agricultural Experiment Station SB 1001, Columbia, MO, pp 21–26

  • Grebenc T, Kraigher H (2007) Types of ectomycorrhiza of mature beech and spruce at ozone-fumigated and control forest plots. Environ Monit Assess 128:47–59. doi:10.1007/s10661-006-9414-3

    Article  PubMed  CAS  Google Scholar 

  • Hagerman SH, Jones MD, Bradfield GE, Gillespie M, Durall DM (1999) Effects of clear-cut logging on the diversity and persistence of ectomycorrhizae at a subalpine forest. Can J Res 29:124–134. doi:10.1139/cjfr-29-1-124

    Article  Google Scholar 

  • Halpern CB, Spies TA (1995) Plant species diversity in natural and managed forests of the Pacific Northwest. Ecol Appl 5:913–934. doi:10.2307/2269343

    Article  Google Scholar 

  • Ingleby K, Munro RC, Noor M, Mason PA, Clearwater MJ (1998) Ectomycorrhizal populations and growth of Shorea parvifolia (Dipterocarpaceae) seedlings regenerating under three different forest canopies following logging. For Ecol Manage 111:171–179. doi:10.1016/S0378-1127(98)00324-7

    Article  Google Scholar 

  • Iñiguez J, Sánchez-Carpintero I, Val RM, Vitoria G, Peralta FJ (1992) Mapa de suelos de Navarra. E: 1:50.000. Gobierno de Navarra, Spain

    Google Scholar 

  • Jakucs E, Agerer R (1999) Tomentella pilosa (Burt) Bourdot & Galzin + Populus alba L. Descr Ectomycorrhizae 4:135–140

    Google Scholar 

  • Jany J-L, Martin F, Garbaye J (2003) Respiration activity of ectomycorrhizas from Cenococcum geophilum and Lactarius sp. in relation to soil water potential in five beech forests. Plant Soil 255:487–494. doi:10.1023/A:1026092714340

    Article  CAS  Google Scholar 

  • Jarvis CE, Walker JRL (1993) Simultaneous, rapid, spectrophotometric determination of total starch, amylose and amylopectin. J Sci Food Agric 63:53–57. doi:10.1002/jsfa.2740630109

    Article  CAS  Google Scholar 

  • Jones MD, Durall DM, Harniman SMK, Classen DC, Simard SW (1997) Ectomycorrhizal diversity on Betula papyrifera and Pseudotsuga menziesii seedlings grown in the greenhouse or outplanted in single-species and mixed plots in southern British Columbia. Can J Res 27:1872–1889. doi:10.1139/cjfr-27-11-1872

    Article  Google Scholar 

  • Jones MD, Durall DM, Cairney JWG (2003) Ectomycorrhizal fungal communities in young forest stands regenerating after clear-cut logging. New Phytol 157:399–422. doi:10.1046/j.1469-8137.2003.00698.x

    Article  Google Scholar 

  • Jonsson L, Dahlberg A, Nilsson M-C, Kårén O, Zackrisson O (1999) Continuity of ectomycorrhizal fungi in self-regenerating boreal Pinus sylvestris forests studied by comparing mycobiont diversity on seedlings and mature trees. New Phytol 142:151–162. doi:10.1046/j.1469-8137.1999.00383.x

    Article  Google Scholar 

  • Kropp BR, Albee S (1996) The effects of silvicultural treatments on occurrence of mycorrhizal sporocarps in a Pinus contorta forest: a preliminary study. Biol Conserv 78:313–318. doi:10.1016/S0006-3207(96)00140-1

    Article  Google Scholar 

  • Kuikka K, Harma E, Markkola A, Rautio P, Roitto M, Saikkonen K, Ahonen-Jonnarth U, Finlay R, Tuomi J (2003) Severe defoliation of Scots pine reduces reproductive investment by ectomycorrhizal symbionts. Ecology 84:2051–2061. doi:10.1890/02-0359

    Article  Google Scholar 

  • Last FT, Pelham J, Mason PA, Ingleby K (1979) Influence of leaves on sporophore production by fungi forming sheathing mycorrhizas with Betula spp. Nature 280:168–169. doi:10.1038/280168a0

    Article  Google Scholar 

  • Lobuglio KF (1999) Cenococcum. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi. Key genera in profile. Springer, Berlin, pp 287–310

    Google Scholar 

  • Moncalvo J-M, Vilgalys R, Redhead SA, Johnson JE, James TY, Aime MC, Hofstetter V, Verduin SJW, Larsson E, Baroni TJ, Thorn RG, Jacobsson S, Clémençon H, Miller OK (2002) One hundred and seventeen clades of euagarics. Mol Phylogenet Evol 23:357–400. doi:10.1016/S1055-7903(02)00027-1

    Article  PubMed  CAS  Google Scholar 

  • Olsen CR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture Circular 939. US Government Printing Office, Washington, DC

  • Pennanen T, Heiskanen J, Korkama T (2005) Dynamics of ectomycorrhizal fungi and growth of Norway spruce seedlings after planting on a mounded forest clear-cut. For Ecol Manage 213:243–252. doi:10.1016/j.foreco.2005.03.044

    Article  Google Scholar 

  • Peter M, Ayer F, Cudlín P, Egli S (2008) Belowground ectomycorrhizal communities in three Norway spruce stands with different degrees of decline in the Czech Republic. Mycorrhiza 18:157–169. doi:10.1007/s00572-008-0166-5

    Article  PubMed  Google Scholar 

  • Porta J, López-Acevedo M, Rodríguez R (1986) Técnicas y experimentos en Edafología. Collegi Oficial d’Enginyers Agrònoms de Catalunya, Barcelona (in Spanish)

    Google Scholar 

  • Read DJ (1999) Mycorrhiza—the state of the art. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin, pp 3–34

    Google Scholar 

  • Rivas-Martínez S, Báscones JC, Díaz TE, Fernández-González F, Loidi J (1991) Vegetación del Pirineo occidental y Navarra. Itinera Geobot 5:5–456

    Google Scholar 

  • Selosse M-A, Bauer R, Moyersoen B (2002) Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytol 155:183–195. doi:10.1046/j.1469-8137.2002.00442.x

    Article  CAS  Google Scholar 

  • Simard SW, Jones MD, Durall DM, Hope GD, Stathers Sorensen NS, Zimonick BJ (2003) Chemical and mechanical site preparation: effects on Pinus contorta growth, physiology, and microsite quality on grassy, steep forest sites in British Columbia. Can J Res 33:1495–1515. doi:10.1139/x03-072

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  • Sorensen TA (1948) A method for establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Det Kgl Danske Vidensk Selsk Skr 5:1–34

    Google Scholar 

  • Urban A, Weiss M, Bauer R (2003) Ectomycorrhizas involving sebacinoid mycobionts. Mycol Res 107(1):3–14. doi:10.1017/S0953756202007116

    Article  PubMed  Google Scholar 

  • USDA (1999) Soil taxonomy—second edition. Agriculture handbook number 436. United States Department of Agriculture, Washington

    Google Scholar 

  • Van der Hout P (2000) Testing the applicability of reduced impact logging in greenheart forest in Guyana. Int Forest Rev 2:24–32

    Google Scholar 

  • Visser S, Parkinson D (1999) Wildfire vs. Clear-cutting: Impacts on ectomycorrhizal and Decomposer Fungi. In: Meurisse RT, Ypsilantis WG, Seybold C (eds) Proceedings Pacific Northwest forest and rangeland soil organism symposium. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, pp 114–123

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Fundación Universitaria de Navarra (FUNA, PIUNA) and Caja Navarra. Iván Closa was a recipient of a grant from Asociación de Amigos de la Universidad de Navarra (ADA). The authors are also grateful to Lorenzo Etxarri for assistance with logistics, site locations and history information on forest management and to Dr. Juan José Irigoyen and Amadeo Urdiain for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nieves Goicoechea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goicoechea, N., Closa, I. & de Miguel, A.M. Ectomycorrhizal communities within beech (Fagus sylvatica L.) forests that naturally regenerate from clear-cutting in northern Spain. New Forests 38, 157–175 (2009). https://doi.org/10.1007/s11056-009-9137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-009-9137-8

Keywords

Navigation