New Forests

, Volume 37, Issue 3, pp 295–311 | Cite as

Quality of maritime pine (Pinus pinaster Ait.) seedlings using waste materials as nursery growing media

  • Pilar Mañas
  • Elena Castro
  • Jorge de las Heras


The use of peat as a growing media in forestry nurseries is decreasing due to high costs and environmental considerations. Furthermore, diverse waste products are being used as organic amendments in certain soils before afforestation. In this study, combinations of both of these resources are considered and seven different materials were used to make mixtures of growing media used for maritime pine tree production in a forestry nursery. Pine bark, Sphagnum peat and paper mill sludge were mixed with sewage sludge, sewage activated sludge, municipal solid waste with activated composted sludge and inorganic fertilizer to fill containers where pine seeds were sown. Germination was monitored 30–50 days after sowing. Needle samples from each treatment were taken and physical parameters (height, stem diameter, aerial dry weight, main root dry weight, total dry weight) were measured along with several morphological attributes. Foliar nutrient content was also determined (N, P, K, Ca, Mg, Fe, Cu, Mn and Zn). The highest values for germination percentage were obtained for 75% pine bark + fertilizer and for sewage sludge treatments. Seedlings grown in paper mill sludge + activated sewage sludge + peat and in paper mill sludge + activated sewage sludge + pine bark mixtures presented the best physical parameter values. Municipal solid waste and composted sludge were the most useful amendments for morphological attributes. After linking morphological indexes and foliar nutrient content, the best Dickson Quality Index values correspond with higher values of N, Ca, Mg, Cu and Zn and lower values of P, K, Fe and Mn.


Organic waste Morphological attributes Germination Seedling growth 


El uso de turba en viveros forestales como sustrato de cultivo está decreciendo debido a su elevado coste y consideraciones medioambientales. Por otro lado, distintos residuos están siendo utilizados como enmiendas orgánicas sobre ciertos suelos previa reforestación. En este estudio, se considera una combinación de ambos factores y siete diferentes materiales fueron usados para hacer mezclas de sustrato de cultivo para la producción de pino marítimo en un vivero forestal. Corteza de pino, turba de esfagno y residuo de pasta de papel fueron mezclados con lodo de depuradora, lodo activado, residuos sólidos urbanos + lodo compostado y fertilizante inorgánico y utilizados para rellenar bandejas donde fue realizada la siembra. La germinación fue monitorizada 30–50 días después de la siembra. Se tomaron muestras de acículas de cada tratamiento y se analizaron parámetros físicos (altura, diámetro del tallo, peso seco parte aérea, peso seco de la raíz principal, peso seco total) además de distintos atributos morfológicos. El contenido foliar en nutrientes también se determinó (N, P, K, Ca, Mg, Fe, Cu, Mn and Zn). Los valores más elevados del porcentaje de germinación se obtuvieron para las mezclas: 75% corteza de pino + fertilizante y las enmiendas con lodo. El crecimiento de las plántulas presentó los mejores valores de los parámetro físicos para: residuo de pasta de papel + lodo activado + turba y para residuo pasta de papel + lodo activado + corteza de pino. La mezcla de residuos sólidos urbanos + lodo compostado proporcionó los mejores valores en relación a los atributos morfológicos. Relacionando los índices morfológicos con el contenido foliar en nutrientes se vió que los mejores valores para el Indice de Calidad de Dickson correspondieron con los valores más altos de N, Ca, Mg, Cu y Zn y los más bajos de P, K, Fe and Mn en el tejido foliar.



Thanks to Stefanie Kroll for reviewing the English text.


  1. Aldrete A, Mexal JG (2005) Sowing depth, media, and seed size interact to influence emergence of three pine species. Tree Planters’ Notes 51(1):27–31Google Scholar
  2. Araujo AS, Monteiro RT (2005) Plant bioassays to assess toxicity of textile sludge compost. Sci Agric 62(3):199–207. doi: 10.1590/S0103-90162005000300013 CrossRefGoogle Scholar
  3. Armson KA, Sadreika V (1979) Forest tree nursery soil management and related practice. Ontario Ministry of Natural Resources, OntarioGoogle Scholar
  4. Benedetti S, Delard C (2005) Evaluación de tres sistemas de producción de plantas de castaño para la producción forestal. INFOR, SantiagoGoogle Scholar
  5. Bergmann W (1993) Ernährungsstörungen bei Kulturpflanzen. Gustav Fischer Verlag, JenaGoogle Scholar
  6. Bernier PY, Lamhamedi MS, Simpson DG (1995) Shoot: root ratio is of limites use in evaluating the quality of container conifer stocks. Tree Planters’ Notes 46(3):102–106Google Scholar
  7. Birchler T, Rose W, Royo A, Pardos M (1998) La planta ideal: revisión del concepto, parámetros definitorios e implementación práctica. INIA Sistemas Recursos Forestales 7(1):109–121Google Scholar
  8. Bunt AC (1988) Media and mixes for container grown plants: a manual on the preparation and use of growing media for growing pot plants. Unwyn Hyman, LondonGoogle Scholar
  9. Carneiro JGA (1995) Produção e controle de qualidade de mudas florestais. UFPR/FUPEF, CuritibaGoogle Scholar
  10. Chong C (2005) Experiences with wastes and substrates. Horttechnology 15:739–747Google Scholar
  11. Cuevas J, Seguel O, Ellies A, Dörner J (2006) Efectos de las enmiendas orgánicas sobre las propiedades físicas del suelo con especial referencia a la adición de lodos urbanos. J Soil Sci Plant Nutr 6(2):1–12Google Scholar
  12. Davidson J (1996) Off site and out of sight! How bad cultural practices are offsetting genetic gains in forestry. In: Dieters MJ, Matheson AC, Nikles DG, Harwood CE, Walker SM (eds) Proceedings of tree improvement for sustainable tropical forestry, Queensland Forest Research Institute Conference, Caloundra, Queensland, 1996Google Scholar
  13. De Boodt M, Vedonk O (1972) The physical properties of the substrates in horticultura. Acta Hortic 26:37–44Google Scholar
  14. Dickson A, Leaf AL, Hosner IE (1960) Quality appraisal of white spruce and white pine seedlings stock in nurseries. For Chron 36:10–13Google Scholar
  15. Dierauf TA, Garner JW (1996) Effect of initial root collar diameter on survival and growth of yellow poplar seedlings over 17 years. Tree Planters’ Notes 47(1):30–33Google Scholar
  16. Felipó MT, Verdonck O, Cappaert I, De Boodt M (1979) Estudio de las propiedades físicas de los sustratos hortícolas. Anal Edaf Agrobiol 38:603–611Google Scholar
  17. Fürst A (1997) Literaturübersicht: Nährstoffdaten Koniferen. Austrian Federal Forest Research Centre, VienaGoogle Scholar
  18. Fürst A (2005) Classification values for European foliage data. Forest Foliar Coordinating Centre—FFCC.
  19. Grossnickle SC, Major JE, Arnott JT, Lemay VM (1991) Stock quality assessment through an integrated approach. New For 5:77–91Google Scholar
  20. Guerrero F, Gasco JM, Hernández-Apaolaza L (2002) Use of pine bark and sewage sludge compost as components of substrates for Pinus pinea and Cupressus arizonica production. J Plant Nutr 25:129–141. doi: 10.1081/PLN-100108785 CrossRefGoogle Scholar
  21. Hernandez-Apaolaza L, Gascó AM, Gascó JM, Guerrero F (2005) Reuse of waste materials as growing media for ornamental plants. Bioresour Technol 96:125–131. doi: 10.1016/j.biortech.2004.02.028 PubMedCrossRefGoogle Scholar
  22. Hicklenton PR, Rodd V, Warman PR (2001) The effectiveness and consistency of source-separated municipal solid waste and bark composts as components of container growing media. Sci Hortic (Amst) 91:365–378. doi: 10.1016/S0304-4238(01)00251-5 CrossRefGoogle Scholar
  23. Ingelmo F, Canet R, Ibañez A, Pomares F, García J (1998) Use of MSW compost, dried sewage sludge and other wastes as partial substitutes for peat and soil. Bioresour Technol 63:123–129. doi: 10.1016/S0960-8524(97)00105-3 CrossRefGoogle Scholar
  24. Jackson MJ, Line MA, Wilson S, Hetherington SJ (2000) Application of composted pulp and paper mill sludge to a young pine plantation. J Environ Qual 29(2):407–414CrossRefGoogle Scholar
  25. Jaenicke H (1999) Good tree nursery practices. Practical guidelines for research nurseries. World Agroforestry Centre (ICRAF), NairobiGoogle Scholar
  26. Kalavroiuziotis IK, Hortis TC, Drakatos PA (2004) The reuse of wastewater and sludge for cultivation of forestry trees in desert areas in Greece. Int J Environ Pollut 21(5):425–439. doi: 10.1504/IJEP.2004.005118 CrossRefGoogle Scholar
  27. Khuder H, Stokes A, Danion F, Gouskou K, Lagane F (2007) Is it possible to manipulate root anchorage in young trees? Plant Soil 294(1–2):87–102. doi: 10.1007/s11104-007-9232-6 CrossRefGoogle Scholar
  28. Landis TD (1985) Mineral nutrition as an index of seedling quality. In: Duryea ML (ed) Evaluating seedling quality: principles, procedures and predictive abilities of major test. Forest Research Laboratory, Oregon State University. Corvallis, pp 29–48Google Scholar
  29. Landis TD (2005) Macronutrients-potassium. In: Dumroese RK (ed) Forest nursery notes. R6-CP-TP-11-04. Portland, OR: USDA Forest Service, Pacific Northwest Region, State and Private Forestry, Cooperative Programs, pp 2–11Google Scholar
  30. May JT (1985) Nutrients and fertilization. In: Lantz CW (ed) Southern pine nursery handbook, chap 12. U.S. Department of Agriculture, Forest Service, Southern Region, pp 1–27Google Scholar
  31. Mullin RE, Svaton J (1972) A grading system with white spruce nursery stock. For Chron 57(3):126–130Google Scholar
  32. Oliet J (2000) La calidad de la postura forestal en vivero. Escuela Técnica Superior de Ingenieros Agrónomos y de Montes de Córdoba. Universidad de Córdoba, CórdobaGoogle Scholar
  33. Olivo VB, Buduba CG (2006) Influence of six substrates in Pinus ponderosa grown in containers under greenhouse conditions. Bosque 27(3):267–271Google Scholar
  34. Ostos JC, López-Garrido R, Murillo JM, López R (2007) Substitution of peat for municipal solid waste- and sewage sludge-based composts in nursery growing media: effects on growth and nutrition of the native shrub Pistacia lentiscus L. Bioresour Technol 99(6):1793–1800Google Scholar
  35. Pawsey CK (1972) Survival and early development of Pinus radiata as influence by size of planting stock. Aust For Res 5(4):13–29Google Scholar
  36. Pineda-Ojeda T, Cetina VM, Vera JA, Cervantes CT, Khalil A (2004) El trasplante contenedor-contenedor (1 + 1) y contenedor-raíz desnuda (P + 1) en la producción de planta de Pinus greggii Engelmn. Agrociencia 38(6):679–686Google Scholar
  37. Semerci A (2005) Fifth year performance of morphologically graded Cedrus libani seedling in the Central Anatolia region of Turkey. Turk J Agric For 29:483–491Google Scholar
  38. Tausz M, Trummera W, Wonischa A, Goesslerb W, Grilla D, Jiménez MSC, Morales D (2004) A survey of foliar mineral nutrient concentrations of Pinus canariensis at field plots in Tenerife. For Ecol Manag 189:49–55. doi: 10.1016/j.foreco.2003.07.034 CrossRefGoogle Scholar
  39. Thompson BE (1985) Seedling morphological evaluation: what you can tell by looking. In: Duryea ML (ed) Evaluating seedling quality; principles, procedures and predictive abilities of major test. Oregon State University, CorvallisGoogle Scholar
  40. Wilson SB, Mecca LK, Danielson HE, Graetz DA, Stoffella PJ (2006) Container and field evaluation of three native shrubs grown in compost-based media. Compos Sci Util 14:178–183Google Scholar
  41. Yanez J (1989) Análisis de suelos y su interpretación. Horticultura 49:75–89Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Pilar Mañas
    • 1
  • Elena Castro
    • 1
  • Jorge de las Heras
    • 1
  1. 1.Escuela Técnica Superior de Ingenieros AgrónomosUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations