New Forests

, Volume 37, Issue 1, pp 17–34 | Cite as

Implication of genotype × site interaction on Pinus radiata breeding in Galicia



The magnitude and practical importance of family × site interactions for growth and form traits considered in radiata pine (Pinus radiata D.Don) breeding were analysed by four different methods: type B genetic correlation, regression coefficient, mean rank deviation and ecovalence. The material analysed consisted in growth, form and frost resistance assessments of 58 open pollinated half-sib families at 3 to 4 years old across three sites in Galicia (NW Spain). Analysis of variance revealed that family × site interactions were quantitatively important for all traits (diameter, volume, branch angle, straightness and frost resistance). The losses in potential genetic gain for a breeding population were important for all traits under individual selection but only for diameter and frost resistance under family selection. Omission of the ten most interactive families from the analysis considerably reduced the losses for all traits, although losses in potential genetic gain remained important for frost resistance under family selection. The results indicate that elimination of these families from breeding programmes would be an effective strategy for selecting for stability in performance across sites for all traits except frost resistance. In order to overcome this problem, selecting varieties for frost resistance specifically adapted to various regional contexts would be an option. However further studies under controlled conditions are required before making final decisions for radiata pine breeding programmes.


Family-site interaction Breeding program Ecovalence Regionalisation 



This study was financially supported by INIA project SC99-028. We especially thank nursery colleagues Mariano Díaz Arnedo, Ricardo Ferradás Crespo, Enrique Diz Dios, María Soledad Barcala Iglesias, María Isabel Juncal Pintos, María Luisa Blanco Moledo and Pilar Soto Peleteiro for their dedicated work. Comments and suggestions from three anonymous reviewers are also greatly appreciated. Thanks to Dr. Christine Francis for revising the English grammar of the text.


  1. Alía R, Gil L, Pardos JA (1995) Performance of 43 Pinus pinaster Ait. Provenances on 5 locations in central Spain. Silvae Genet 44:75–81Google Scholar
  2. Allard RW, Bradshaw AD (1964) Implications of genotype-environmental interactions in applied plat breeding. Crop Sci 4:503–508Google Scholar
  3. Anonymous MAPA (2001) Tercer Inventario Forestal Nacional (A Coruña, Lugo, Ourense y Pontevedra). Ministerio de Medio Ambiente, MadridGoogle Scholar
  4. Bentzer BG, Foster GS, Hellberg AR, Podzorski AC (1989) Genotype × environment interaction in Norway spruce involving three levels of genetic control: seed source, clone mixture and clone. Can J Res 18:1172–1181. doi: 10.1139/x88-180 CrossRefGoogle Scholar
  5. Burdon RD (1977) Genetic correlation as a concept for studying genotype-environment interaction in forest breeding. Silvae Genet 26:168–175Google Scholar
  6. Carter KK, Adams GW, Greenwood MS, Nitschke P (1990) Early selection in jack pine. Can J Res 20:285–291CrossRefGoogle Scholar
  7. Codesido V (2006) Mejora genética de Pinus radiata D. Don en Galicia. Tesis doctoral, Universidad de Vigo, 186 ppGoogle Scholar
  8. Codesido V, Fernández-López J (2008) Juvenile genetic parameters estimates for vigour, stem form, branching habit and survival in three Pinus radiata D.Don progeny tests in Galicia, Spain. Eur J For Sci.
  9. Codesido V, Merlo E (2001) Caracterización fenológica del huerto semillero de Pinus radiata de Sergude. III Congreso Forestal Nacional. Granada, 25–28 Septiembre 2001. Sierra Nevada 2001. Tomo II. Mesa 3. Mejora genética, viveros y repoblación forestal, pp 69–74Google Scholar
  10. Cotterill PP, Zed PG (1980) Estimates of genetic parameters for growth and form traits in four Pinus radiata D.Don progeny tests in South Australia. Aust For Res 10:155–167Google Scholar
  11. Dean CA, Cotterill PP, Burdon RD (2006) Early selection of radiata pine. I. Trends over time in additive and dominance genetic variances and covariances of growth traits. Silvae Genet 55:182–191Google Scholar
  12. Durel CE, Roman Amat B (1987) Interaction famile × site dans un test tristationnel de descendances de Douglas (Pseudotsuga menziesii (Mirb.) Franco). Ann Sci For 44:189–209. doi: 10.1051/forest:19870204 CrossRefGoogle Scholar
  13. Eriksson G, Ekberg I (2001) An introduction to forest genetics. Genetic Centre, Department of Forest Genetics, Upssala, p 166Google Scholar
  14. Espinel S, Aragonés A (1997) Genetic parameters for Pinus radiata D.Don in Basque Country. N Z J Sci 27:272–279Google Scholar
  15. Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant breeding programme. Aust J Agricult Sci 14:742–745. doi: 10.1071/AR9630742 CrossRefGoogle Scholar
  16. García del Barrio JM, De-Miguel J, Alía R, Iglesias S (2001) Regiones de Identificación y Utilización de material forestal de reproducción. Ministerio de Medio Ambiente. Serie cartográfica. Madrid, 293 ppGoogle Scholar
  17. Greer DH, Robinson LA, Hall AJ, Klages K, Donnison H (2000) Frost hardening of Pinus radiata seedlings: effects of temperature on relative growth rate, carbon balance and carbohydrate concentration. Tree Physiol 20:107–114PubMedGoogle Scholar
  18. Gwaze DP, Williams JA, Kanowski PJ, Bridgwater FE (2001) Interactions of genotype with site for height and stem straightness in Pinus Taeda in Zimbabwe. Silvae Genet 50:135–139Google Scholar
  19. Hanson WD (1970) Genotypic stability. Theor Appl Genet 40:226–231. doi: 10.1007/BF00285245 CrossRefGoogle Scholar
  20. Hill J, Becker HC, Tigarstedt PMA (1998) Quantitative and ecological aspects of plant breeding. Chapman & Hall, London, p 275Google Scholar
  21. Hodge GR, White TL (1992) Genetic parameter estimates for growth traits at different ages in slash pine and some implications for breeding. Silvae Genet 41:252–262Google Scholar
  22. Jayawickrama KJS (2001) Genetic parameter estimates for radiata pine in New Zealand and New South Wales: a synthesis of results. Silvae Genet 50:45–53Google Scholar
  23. Jayawickrama KJS, Balocchi C (1993) Growth and form of provenances of Pinus radiata in Chile. Aust For 56:172–178Google Scholar
  24. Johnson IG (1992) Family-site interactions in radiata pine families in New South Wales, Australia. Silvae Genet 41:55–62Google Scholar
  25. Johnson GR, Burdon RD (1990) Family-site interaction in Pinus radiata: implications for progeny testing strategy and regionalised breeding in New Zealand. Silvae Genet 39:55–62Google Scholar
  26. Kanzler A, Hagedorn SF, Hodge GR, Dvorak WS (2003) Genotype by environment interaction for volume growth at 6 years of age in a series of the five Pinus patula progeny trials in southern Africa. S Afr For J 198:3–15Google Scholar
  27. Lambeth CC (1980) Juvenile-Mature correlations in Pinaceae and implications for early selection. For Sci 26:571–580Google Scholar
  28. Lambeth CC, van Buijtenen JP, Duke SD (1983) Early selection is effective in 20 year old genetic tests of loblolly pine. Silvae Genet 32:210–215Google Scholar
  29. Matheson AC, Raymond CA (1984) The impact of genotype × environment interactions on Australian Pinus radiata breeding programs. Aust For Res 14:11–25Google Scholar
  30. Matziris DI, Zobel BJ (1973) Inheritance and correlations of juvenile characteristics in loblolly pine (Pinus taeda L.). Silvae Genet 22:8–45Google Scholar
  31. Menzies MI, Burdon RD, Holden DG, Warrington IJ (1987) Family variation and potential for genetic gain in frost resistance of Pinus radiata. New For 3:171–186. doi: 10.1007/BF00118755 Google Scholar
  32. Namkoong G, Kang HC, Brouard JS (1988) Tree breeding: principles and strategies. Springer-Verlag, New York, 180 ppGoogle Scholar
  33. Pswarayi IZ, Barnes RD, Birks JS, Kanowski PJ (1997) Genotype-environment interaction in a population of Pinus elliottii Engelm, Var. elliottii. Silvae Genet 46:35–40Google Scholar
  34. Raymond CA, Cotterill PP (1990) Methods of assessing cross form in Pinus radiata. Silvae Genet 39:67–71Google Scholar
  35. Riemenschneider DE (1988) Heritability, age-age correlations, and inferences regarding juvenile selection in Jack Pine. For Sci 34:1076–1082Google Scholar
  36. SAS (1989) SAS STAT User guide, version 6, 4th edn. SAS Institute Inc., Cary, 943 ppGoogle Scholar
  37. Shelbourne CJA (1972) Genotype-environment interactions: its study and its implications in forest tree improvement. Proceedings of IUFRO genetics- SABRAO joint symposia, Tokio, B-1:1–28Google Scholar
  38. Sierra de Grado R, Diez-Barra R, Alia Miranda R (1999) Evaluación de la rectitud del fuste en seis procedencias de Pinus pinaster Ait. Investig Agrar Sist Recur For 8:264–278Google Scholar
  39. Skröppa T (1984) A critical evaluation of methods available to estimate the genotype × environment interaction. Stud For Suecia 166:3–14Google Scholar
  40. Snedden CL, Verryn SD (1999) An investigation into the occurrence and nature of genotype by environment interaction in Pinus patula. S Afr For J 186:67–75Google Scholar
  41. Temel F, Adams WT (2000) Persistence and age-age correlations of stem defects in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco). For Genet 7:145–153Google Scholar
  42. Wu HX, Yeh FC, Pharis RP, Dhir N, Dancik BP (2000) Study of early selection in tree breeding. 3. A case study using early information to enhance selection efficiency in late trait in Lodgepole Pine (Pinus contorta spp. Latifolia). Silvae Genet 49:152–158Google Scholar
  43. Wricke G (1962) Über eine methode zur erfassung der ökologischen streubreite in feldversuchen. Zeitung für pflanzenzüchtung 47:92–96Google Scholar
  44. Wright JW (1976) Introduction to forest genetics. Academic Press, New York, 463 ppGoogle Scholar
  45. Zas R, Merlo E, Fernández-López J (2004) Genotype × environment interaction in maritime pine families in Galicia, Northwest Spain. Silvae Genet 53:175–182Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.CINAM-LourizánPontevedraSpain

Personalised recommendations