Advertisement

New Forests

, 34:41 | Cite as

Effects of light availability and soil flooding on growth and photosynthetic characteristics of Genipa americana L. seedlings

  • Alyne Oliveira Lavinsky
  • Cristiano De Souza Sant’Ana
  • Marcelo Schramm Mielke
  • Alex-Alan Furtado De Almeida
  • Fábio Pinto Gomes
  • Solange França
  • Delmira Da Costa Silva
Article

Abstract

Genipa americana L. (Rubiaceae) is a late successional neotropical fruit tree used in riparian forest restoration programs. We analyze the effects of light availability and soil flooding on the growth and photosynthetic characteristics of G. americana seedlings under nursery and natural light conditions. Two light levels (full sunlight and shade), and two levels of soil water (flooded and control) were used in the experiment. Flooding induced significant changes in the total seedling biomass (P < 0.01). The differences among water treatments were 70 and 10% at full sunlight and shade, respectively. These changes were explained by alterations in the maximum quantum efficiency of the photosystem 2 (Fv/Fm), light-saturated net photosynthetic rates (A sat) and intrinsic water use efficiency (WUE). G. americana has high physiological plasticity in relation to the light availability and flooding, although significant interactive effects between high light exposure and soil flooding were observed in several photosynthetic and growth variables. The results highlight the importance of the synergistic effects between physical environmental variables on the establishment and growth of G. americana seedlings. In the practical point of view we can indicate that, in degraded riparian forests subjected to soil flooding, seedlings of this species should be planted under partially shaded environments.

Keywords

Brazilian Atlantic rainforest Chlorophyll fluorescence Riparian forest restoration Seedling establishment Shade tolerance 

Notes

Acknowledgments

Financial support for the investigation was provided by the Universidade Estadual de Santa Cruz (UESC), the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We also thank the reviewers for critically reading the manuscript and Brenda C. C. Cardoso for the English review.

References

  1. Andrade ACS, Ramos FN, Souza AF, Loureiro MB, Bastos R (1999) Flooding effects in seedlings of Cytharexyllum myrianthum Cham. and Genipa americana L.: responses of two neotropical lowland tree species. Braz J Bot 22:281–285Google Scholar
  2. Ball MC, Butterworth JA, Roden JS, Christian R, Egerton JG (1994) Applications of chlorophyll fluorescence to forest ecology. Aust J Plant Physiol 22: 311–319CrossRefGoogle Scholar
  3. Barbosa LM (2000) Considerações gerais e modelos de recuperação de formações ciliares. In: Rodrigues RR, Leitão Filho HF (eds) Matas Ciliares: conservação e recuperação. EDUSP, São Paulo, pp 289–312Google Scholar
  4. Barker MG, Press MC, Brown ND (1997) Photosynthetic characteristics of dipterocarp seedlings in three tropical rain forest light environments: a basis for niche partitioning. Oecol 112: 453–463CrossRefGoogle Scholar
  5. Bazzaz MG, Pickett STA (1980) Physiological ecology of forest succession: a comparative review. Ann Rev Ecol System 11:287–310CrossRefGoogle Scholar
  6. Bianchini E, Pimenta JA, Santos FM (2001) Spatial and temporal variation in the canopy cover in a tropical semi-deciduous forest. Braz Arch Biol Technol 44: 269–276CrossRefGoogle Scholar
  7. Carvalho PER (1994) Espécies florestais brasileiras. Empresa brasileira de pesquisa agropecuária, Colombo, Brazil, p 640Google Scholar
  8. Cordell S, Cabin RJ, Hadway LJ (2002) Physiological ecology of native and alien dry forest shrubs in Hawaii. Biol Inv 4:387–396CrossRefGoogle Scholar
  9. Davanso VM, Souza LA, Medri ME, Pimenta JA, Bianchini E (2002) Photosynthesis, growth and development of Tabebuia avellanedae Lor. ex Griseb. (Bignoniaceae) in flooded soil. Braz.Arch Biol Technol 45:375–384CrossRefGoogle Scholar
  10. Demming-Adams B, Adams WW, III (1992) Photoprotection and otherresponses of plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol 43:599–626CrossRefGoogle Scholar
  11. Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Ann Rev Plant Physiol 33:317–345CrossRefGoogle Scholar
  12. Gravatt DA, Kirby CJ (1998) Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiol 18:411–417PubMedGoogle Scholar
  13. Jones HG (1998) Stomatal control of photosynthesis and transpiration. J Exp Bot 49:387–398CrossRefGoogle Scholar
  14. Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monog 1:1–29Google Scholar
  15. Krause GH, Winter K (1996) Photoinhibition of photosynthesis in plant growing in natural tropical forest gaps. A chlorophyll fluorescence study Bot Acta 109:456–462Google Scholar
  16. Lichtenthaler HK, Burkart S, Schlinder C, Stober F (1992) Changes in photosynthetic pigments and in vivo chlorophyll fluorescence variables under photoinhibitory growth conditions. Photosynthetica 27:343–353Google Scholar
  17. Lobo PC, Joly CA (2000) Aspectos ecofisiológicos da vegetação de Mata ciliar do sudeste do Brasil. In: Rodrigues RR, Leitão Filho HF (eds) Matas Ciliares: conservação e recuperação. EDUSP, São Paulo, pp 143–157Google Scholar
  18. Loik ME, Holl KD (1999) Photosynthetic responses to light for rainforest seedlings planted in abandoned pasture. Costa Rica Rest Ecol 7:382–391CrossRefGoogle Scholar
  19. Loik ME, Holl KD (2001) Photosynthetic responses of tree seedlings in grass and under shrubs in early-successional tropical old fields. Costa Rica. Oecol 127:40–50Google Scholar
  20. Lopez OR, Kursar TA (1999) Flood tolerance of four tropical tree species. Tree Physiol 19:925–932PubMedGoogle Scholar
  21. Lorenzi H (1992) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Editora Plantarum, Nova Odessa. p 382Google Scholar
  22. Lüttge U (1997) Physiological ecology of tropical plants. Springer, Berlin, p 384Google Scholar
  23. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668PubMedCrossRefGoogle Scholar
  24. Mielke MS, Almeida A-AF, Gomes FP, Mangabeira PAO, Silva DC (2005) Effects of soil flooding on leaf gas exchange and growth of two neotropical pioneer tree species. New For 29:161–168Google Scholar
  25. Mielke MS, Almeida A-AF, Gomes FP, Aguilar AG, Mangabeira PAO (2003) Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. Environ Exp Bot 50:221–231CrossRefGoogle Scholar
  26. Moraes Neto SP, Gonçalves JLM, Takaki M, Cenci S, Gonçalves JC (2000) Crescimento de mudas de algumas espécies arbóreas que ocorrem na Mata Atlântica, em função do nível de luminosidade. Árvore 24:35–45Google Scholar
  27. Nobel P (1991) Physiochemical and environmental plant physiology.Academic Press, San Diego, p 635Google Scholar
  28. Pearcy RW (2000) Acclimation to Sun and Shade In: Raghavendra AS (ed) Photosynthesis: a Comprehensive Treatise. Cambridge University Press, Cambridge, pp 250–263Google Scholar
  29. Pezeshki SR (2001) Wetland plant responses to soil flooding. Environ Exp Bot 46:299–312CrossRefGoogle Scholar
  30. Salvador JLG (1986) Comportamento de espécies florestais nativas em áreas de depleção de reservatórios. IPEF 33:73–78Google Scholar
  31. Hardt E, Pereira-Silva EFL, Zakia MJB, Lima WP (2006) Plantios de restauração de Matas ciliares em minerações de areia da Bacia do Rio Corumbataí: eficácia na recuperação da biodiversidade. Sci Florestalis 70:107–123Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Alyne Oliveira Lavinsky
    • 1
  • Cristiano De Souza Sant’Ana
    • 1
  • Marcelo Schramm Mielke
    • 1
  • Alex-Alan Furtado De Almeida
    • 1
  • Fábio Pinto Gomes
    • 1
  • Solange França
    • 2
  • Delmira Da Costa Silva
    • 1
  1. 1.Departamento de Ciências BiológicasUniversidade Estadual de Santa CruzIlhéusBrazil
  2. 2.Departamento de Ciências Agrárias e AmbientaisUniversidade Estadual de Santa CruzIlhéusBrazil

Personalised recommendations