New Forests

, Volume 32, Issue 2, pp 211–229 | Cite as

Transgenic poplar with enhanced growth by introduction of the ugt and acb genes

  • Rurick Salyaev
  • Natalya Rekoslavskaya
  • Anastasia Chepinoga
  • Sergio Mapelli
  • R. Pacovsky


The transgenic poplar (Populus tremula L.) was obtained by transfer of the ugt and acb genes via triparental mating, which was employed to deliver large fragments of TDNA as a cluster. Freshly harvested seeds of local poplar were placed on MS agar medium and plantlets were obtained. After 1 year of subcultivation, plantlets were infected with a transconjugant of triparental mating with target ugt and acb genes into axillary buds. The transformed sprouts so obtained were cut and subcultivated on agar medium with an addition of 0.6 mg/l indole-3-butyric acid as an auxin source. The transformed sprouts showed GUS activity and resistance to gentamycin and kanamycin. The integrity of the target ugt and acb genes into poplar genome was demonstrated via PCR and Southern blot hybridisation. The transgenic poplar plants revealed a higher growth energy, corresponding to a higher content of IAA as opposed to control plants. Both transgenic and non-transformed plants were potted into soil for outdoor acclimatisation and subsequently transferred to earth in beds. Growing outside during 3 years, the transgenic poplar demonstrated a higher growth rate with fast bud and branch development.


acb Agrobacterium tumefaciens Poplar Populus tremula L. Transgenesis ugt 



the gene encoding the synthesis of uridine 5′-diphosphoglucosyl transferase


the gene encoding the synthesis of acyl-CoA-binding protein


uridine diphosphoglycosyltransferase


indoleacetic acid


indolebutyric acid


4-methylumbelliferyl β-d-glucuronide


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandurski, R.S., Schulze, A., Reinicke, D.M. 1986Biosynthetic and metabolic aspects of auxinsBopp, M. eds. Plant Growth Substances 1985Springer-VerlagBerlin, Heidelberg, New York, Tokyo8391Google Scholar
  2. Bialek, K., Cohen, J.D. 1992Amide-linked indoleacetic acid conjugates may control levels of indoleacetic acid in germinating seedlings of Phaseolus vulgaris Plant Physiol.10020022007PubMedCrossRefGoogle Scholar
  3. Bradshaw, H.D., Ceulemans, R., Davis, J. 2000Emerging model system in plant biology: poplar (populus) as a model forest treeJ. Plant Growth Regul.19306313CrossRefGoogle Scholar
  4. Chenevard, D., Jay Allemand, C., Gendraud, M., Frossard, J.S. 1995The effect of sucrose on the development of hybrid walnut microcuttings (Juglans nigra×Juglans regia). Consequences on their survival during acclimationAnn. Sci. For.52147156Google Scholar
  5. Cohen, J.D., Bandurski, R.S. 1982Chemistry and physiology of the bound auxinsAnnu. Rev. Plant Physiol.33403430CrossRefGoogle Scholar
  6. Davies, P.J. 1995Plant Hormones Physiology, Biochemistry and Molecular BiologyKluwer Academic PublishersDordrecht, Boston, London833Google Scholar
  7. Donnelly, D.J., Vidaver, W.E. 1984Leaf anatomy of red raspberry transferred from culture to soilJ. Am. Soc. Hort. Sci.109172176Google Scholar
  8. Fu, J., Sampalo, R., Gallardo, F., Canovas, F.M., Kirby, E.G. 2003Assembly of cytosolic pine glutamine synthase holoenzyme in the leaf of transgenic poplar leads to an enhanced vegetative growth of young plantsPlant Cell Environ.26411418CrossRefGoogle Scholar
  9. Gelvin, S.B., Liu, C.-N. 1994Genetic manipulation of Agrobacterium tumefaciens strains to improve transformation of recalcitrant plant species, Sect. B4Gelvin, S.B.Schilperoort, R.A. eds. Plant Molecular Biology ManualKluwer Academic PublishersDordrecht, Boston, London113Google Scholar
  10. Grout, B.W.W., Aston, M.J. 1978Transplanting of cauliflower plants regenerated from meristem culture. II. Carbon dioxide fixation and the development of photosynthetic abilityHortic. Res.176571Google Scholar
  11. Jackson, R.G, Lim, E.K., Li, Y., Kowalczyk, M., Sandberg, G., Hoggett, J., Ashford, D.A., Bowels, D.J. 2001Identification and biochemical characterisation of an Arabidopsis indole-3-acetic acid glucosyltransferaseJ. Biol. Chem.27643504356PubMedCrossRefGoogle Scholar
  12. Jackson, R.G., Kowalczyk, M., Li, Y., Higgins, G., Ross, J., Sandberg, G., Bowels, D.J. 2002Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic linesPlant J.32573583PubMedCrossRefGoogle Scholar
  13. James, C. 2003Preview: Global Status of Commercialized Transgenic Crops: 2003. ISAAA Briefs No 30ISAAAIthaca, NYGoogle Scholar
  14. Jefferson, R.A., Kavanagh, T.A., Bevan, M. 1987GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plantsEMBO J.639013907PubMedGoogle Scholar
  15. Kloptenstein, N.B., Chun, Y.W., Kim, M.S., Ahuja, M.R. 1997Micropropagation, Genetic Engineering and Molecular Biology of PopulusRM-GTR-297USDA Rocky Mountain Forest and Range Experimental StationFort Collins, COGoogle Scholar
  16. Ljung, M., Ostin, A., Lioussanne, L., Sandberg, G. 2001Development regulation of indole-3-acetic acid turnover in Scots pine seedlingsPlant Physiol.125464475PubMedCrossRefGoogle Scholar
  17. Merkle, S.A., Dean, J.F.D. 2000Forest tree biotechnologyCurr. Opin. Biotech.11298302PubMedCrossRefGoogle Scholar
  18. Murashige, T., Skoog, F. 1962Revised medium for rapid growth and bioassays with tobacco tissue culturesPhysiol. Plantarum.15474497Google Scholar
  19. Pacovsky R.S. 1996. Arabidopsis thaliana acyl-CoA-binding protein: structurefunctions, genetics. Ph. D. thesis. Michigan State University, East Lansing, 164 pp.Google Scholar
  20. Pilate, G., Guiney, E., Holt, K., Petit-Conil, M., Lapierre, C., Leple, J.C., Pollet, B., Mila, I., Webster, E.A., Marstorp, H.G., Hopkins, D.W., Jouanin, L., Boerjan, W., Schuch, W., Cornu, D., Halpin, C. 2002Field and pulping performances of transgenic trees with altered lignificationNat. Biotechnol.20607612PubMedCrossRefGoogle Scholar
  21. Rekoslavskaya, N.I., Zhukova, V.M., Salyaev, R.K., Bandurski, R.S., Kuznetsova, E.V. 1997Acquisition of resistance to 2,4-D by plants from genus Solanum as a result of gene iaglu transfer from maizeDokl. Akad. Nauk.356825829(in Russian)Google Scholar
  22. Rekoslavskaya, N.I., Gamanetz, L.V., Bryksina, I.V., Mapelli, S.P., Salyaev, R.K. 1998Obtaining transgenic tomato (Lycopersicon esculentum Mill.) and potato (Solanum tuberosum L.) by transfer of the ugt gene from cornTomato Genetics Coop. Rep.484042Google Scholar
  23. Rekoslavskaya, N.I., Zhukova, V.M., Chekanova, E.G., Salyaev, R.K., Mapelli, S.P., Gamanetz, L.V. 1999Auxin status of transformed Solanum plants in relation to their tolerance to 2,4-D and productivityRuss. J. Plant Physiol.46609619Google Scholar
  24. Salyaev, R.K., Rekoslavskaya, N.I., Mapelli, S., Sumtsova, V.M., Pakova, N.V., Truchin, A.A. 2003Transgenic plants of modified auxin status and enhanced productivityMachackova, I.Romanov, G.A. eds. Phytohormones in Plant Biotechnology and AgricultureKluwer Adademic PublishersDordrecht, The Netherlands171183Google Scholar
  25. Sandberg, G., Anderson, G., Dunberg, A. 1981Identification of 3-indole acetic acid in Pinus sylvestris L. by gas chromatography-mass spectrometry, and quantitative analysis by ion-pair reverse-phase liquid chromatography with spectrofluorimetric detectionJ. Chromatogr.205125137CrossRefGoogle Scholar
  26. Sambrook, J., Fritsch, E.F., Maniatis, T. 1989Molecular Cloning. A Laboratory Manual2Cold Spring Harbor LaboratoryCold Spring Harbor, NYGoogle Scholar
  27. Szerszen, J.B., Szczyglowski, K., Bandurski, R.S. 1994 iagluA gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acidScience26516991701PubMedGoogle Scholar
  28. Topfer, R., Matzeit, V., Gronenborn, B., Schell, J., Steinbiss, H.-H. 1987A set of plant expression vectors for transcriptional and translational fusionsNucleic Acid Res.155890PubMedGoogle Scholar
  29. Tuominen, H., Puech, L., Fink, S., Sundberg, B. 1997A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspenPlant Physiol.115577585PubMedGoogle Scholar
  30. Tuominen, H., Sitbon, F., Jacobsson, C., Sandberg, G., Olsson, O., Sundberg, B. 1995Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indoleacetic acid-biosynthetic genesPlant Physiol.10911791189PubMedGoogle Scholar
  31. Uggla, C., Mellerowicz, E.J., Sundberg, B. 1998Indole-3-acetic acid controls cambial growth in Scots pine by positioning signallingPlant Physiol.117113121PubMedCrossRefGoogle Scholar
  32. Walkerpeach, C.R., Velten, J. 1994Agrobacterium-mediated gene transfer to plant cells:cointegrate and binary vector systems, Sect. B1Gelvin, S.B.Schilperoort, R.A. eds. Plant Molecular Biology ManualKluwer Academic PublishersDordrecht, Boston, London119Google Scholar
  33. Went, F.W. 1926On growth-accelerating substances in coleoptile of Avena sativa Proc. Kon. Ned. Akad. Wet.301019Google Scholar
  34. Wightman F. 1964. Pathway of tryptophan metabolism in tomato plants. In: Regulateurs Naturels de la Croissance Vegetale. C.N.R.S, Paris, pp. 193–212.Google Scholar
  35. Wisniewski, L.A., Frampton, L.J.,Jr., McKeand, S.E. 1986Early shoot and root quality effects on nursery and field development of tissue cultured loblolly pineHortScience2111851186Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Rurick Salyaev
    • 1
  • Natalya Rekoslavskaya
    • 1
  • Anastasia Chepinoga
    • 1
  • Sergio Mapelli
    • 2
  • R. Pacovsky
    • 3
  1. 1.Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of Russian Academy of SciencesIrkutskRussia
  2. 2.Istituto Biologia Biotecnologia Agraria, C.N.R.MilanItaly
  3. 3.Agricultural Service of CaliforniaLos AngelesUSA

Personalised recommendations