Advertisement

New Forests

, Volume 31, Issue 2, pp 115–129 | Cite as

Post-harvest Regeneration of Lowland Black Spruce Forests in Northeastern Ontario

  • Han Y. H. Chen
  • Jian R. Wang
Article

Abstract

Success of natural regeneration has been a concern since the introduction of heavy machinery in harvesting. The objective was to compare the effect of three operational harvest methods careful logging around advanced growth (CLAAG), group seed tree (GST), and group seed tree followed by shearblading site preparation (SHE) on natural regeneration in the Clay Belt region of Ontario. A total of 30 stands, 562 cluster sample plots, were surveyed. Total density of black spruce regeneration did not differ, but height structure of black spruce regeneration did among harvest methods. The CLAAG method resulted in highest total regeneration density of other conifers. Decreasing density of other conifers from the CLAAG to GST to SHE sites indicated that the CLAAG method protected advance regeneration as expected and the SHE method removed advance regeneration in the path of the shearing blade. Both black spruce and other conifer regeneration densities increased with increasing time since harvest. Stocking of black spruce, all conifers, or all tree species did not differ significantly among harvest methods, nor did it change with time since harvest. Stocking was nonlinearly related to regeneration density. Models developed in this study predict that full stocking (i.e., 60%) can be reached based on regeneration density of 5000 stems per ha regardless of crop species choice preference. However, the existing stocking criterion for assessing black spruce regeneration may be problematic.

Keywords

Careful logging around advanced growth (CLAAG) Group seed tree (GST) Group seed tree followed by shearblading site preparation (SHE) Harvest method Regeneration density Stocking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, H.Y.H., Popadiouk, R.V. 2002Dynamics of North American boreal mixedwoodsEnviron. Rev.10137166CrossRefGoogle Scholar
  2. Chen, H.Y.H., Klinka, K., Kayahara, G.J. 1996Effects of light on growthcrown architectureand specific leaf area of Pinus contorta var. latifolia and Pseudotsuga menziesii var. glauca saplingsCan. J. For. Res.2611491157Google Scholar
  3. Clark, P.J., Evans, F.C. 1952Distance to nearest neighbor as a measure of spatial relationships in populationsEcology35445453Google Scholar
  4. Doucet, R., Boily, J. 1986Croissance en hauteur comparée de marcottes de l’épinette noire et de plants à racines nues d’épinette noireainsi que de plants de pin grisCan. J. For. Res.2313961401Google Scholar
  5. Greene, D.F., Kneeshaw, D.D., Messier, C., Lieffers, V., Cormier, D., Doucet, R., Coates, K.D., Groot, A., Grover, G., Calogeropoulos, C. 2002Modelling silvicultural alternatives for conifer regeneration in boreal mixedwood stands (aspen/white spruce/balsam fir)For. Chron.78281295Google Scholar
  6. Greene, D.F., Zasada, J.C., Sirois, L., Kneeshaw, D., Morin, H., Charron, I., Simard, M.J. 1999A review of the regeneration dynamics of North American boreal forest tree speciesCan. J. For. Res.29824839Google Scholar
  7. Groot A. 1984. Stand and site conditions associated with abundance of black spruce advance growth in the northern clay section of Ontario. Can. For. Serv., Sault. Ste. MarieON. Inf. Rep. O-X-358, 15 pp.Google Scholar
  8. Groot, A. 1995Harvesting methods affects survival of black spruce advance growthNorth. J. Appl. For.12811Google Scholar
  9. Groot, A., Horton, B.J. 1994Age and size structure of natural and second growth peatland Picea mariana standsCan. J. For. Res.24225233Google Scholar
  10. Groot, A., Jeglum, J.K., Brown, W. 2001Natural regeneration of conifersWagner, R.G.Colombo, S.J. eds. Regenerating the Canadian Forest: Principles and Practice for OntarioFitzhenry & WhitesideMarkham, ON375392Google Scholar
  11. Harvey, B., Brais, S. 2002Effects of mechanized careful logging on natural regeneration and vegetation competition in the southeastern Canadian boreal forestCan. J. For. Res.32653666CrossRefGoogle Scholar
  12. Jeglum, J. 1987Alternate strip clearcutting in upland black spruce. II. Factors affecting regeneration in first cut stripsFor. Chron.63439444Google Scholar
  13. Ketcheson D.E. and Jeglum J.K. 1972. Estimates of black spruce and peatland areas in Ontario. Dep. Environ. Can. For. Serv., Sault Ste. MarieON. Inf. Rep. O-X-172, 29 pp.Google Scholar
  14. Neter, J., Kutner, M.H., Nachtsheim, C.J., Wasserman, W. 1996Applied Linear Statistical Models4Richard D. Irwin, Inc.Chicago, ILGoogle Scholar
  15. Ontario Ministry of Natural Resources 1997. Silvicultural guide to managing for black spruce jack pine and aspen on boreal forest ecosites in Ontario.Version 1.1. Ont. Min. Nat. Resour. Queen’s Printer for Ontario, Toronto, ON, 3 books, 822 pp.Google Scholar
  16. Ontario Ministry of Natural Resources 2002. State of the forest report 2001. Forest Information Series. Queen’s Printer for Ontario, Toronto, ON, 54 pp.Google Scholar
  17. Perala, D.A. 1990Populus tremuloides Michx. – Quaking aspenBurns, R.M.Honkala, B.H. eds. Silvics of North America: 2. HardwoodsUSDA For. Serv.Washington, DC555569(tech. cords)., Agric. Handbk. No 654Google Scholar
  18. Pothier, D. 2000Ten-year results of strip clear-cutting in Quebec black spruce standsCan. J. For. Res.305966CrossRefGoogle Scholar
  19. Robinson, F.C. 1987Alternate strip clearcutting in upland black spruce. I. An introductionFor. Chron.63435438Google Scholar
  20. Safford, L.O., Bjorkbom, J.C., Zasada, J.C. 1990Betula papyrifera Marsh. Paper birchBurns, R.M.Honkala, B.H. eds. Silvics of North America: 2. HardwoodsUSDA For. Serv.Washington, DC158171tech. cords., Agric. Handbk. No 654Google Scholar
  21. Soil Classification Working Group1998The Canadian System of Soil Classification3NRC Research Press, Research Branch Agriculture and Agri-Food CanadaOttawa, ONPublication 1646.Google Scholar
  22. Tenhagen M.D. and Jeglum J.K. 1997b. Decreased strip width and increased seeding period result in increased black spruce stocking and density in 18-year-old strip clear-cuts. Can. For. Serv, Sault Ste. Marie, ON Frontline, Tech. Note 89, 4 pp.Google Scholar
  23. Tenhagen M.D. and Jeglum J.K. 1997b. Decreased strip width and increased seeding period result in increased black spruce stocking and density in 18-year-old strip clear-cuts. Can. For. Serv, Sault Ste. Marie ON FrontlineTech. Note 89, 4 pp.Google Scholar
  24. Vasiliauskas, S., Chen, H.Y.H. 2002How long do trees take to reach breast height after fire in northeastern Ontario?Can. J. For. Res.3218891892CrossRefGoogle Scholar
  25. Viereck, L.A., Johnston, W.F. 1990Picea mariana (Mill) B.S.P. – Black SpruceBurns, R.M.Honkala, B.H. eds. Silvics of North America: Vol. 1. ConifersUSDA For. Serv.Washington, D.C227237Google Scholar
  26. Wood, J.E., Raper, R. 1987Alternate strip clearcutting in upland black spruce. III. Regeneration options for uncut stripsFor. Chron.63446450Google Scholar
  27. Zasada J.C. and Phipps H.M. 1990. Populus balsamifera L. Balsam poplar. In: Burns R.M. and Honkala B.H. (tech. coords.), Silvics of North America: 2. Hardwoods. USDA For. Serv., Washington, DC, Agric. Handbk. No 654 pp. 518–529.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Faculty of Forestry and the Forest EnvironmentLakehead UniversityThunder Bay

Personalised recommendations