The Hypothalamo-Hypophyseal System: Age and Major Noncommunicable Diseases (malignant neoplasms of hormonedependent tissues, cardiovascular, and type 2 diabetes mellitus)

This review presents basic data on the hypothalamo-hypophyseal system (HHS) and its main components; the role of age (with the focus on aging) is discussed as a factor linked with changes in the state of the HHS and mediating its involvement in “preparative” predisposition to various major chronic noncommunicable diseases in humans (in particular, such neoplasms as cancer of the breast, endometrium, and prostate; ischemic heart disease as the leading cardiovascular pathology; type 2 diabetes mellitus) with the involvement of this major hormonal-metabolic system via obesity, insulin resistance, and decreased glucose tolerance, as well as the interaction of insulin, insulin-like growth factor 1, and their receptors and effects on the reproductive and hypothalamo-hypophyseal-adrenal system. Data are presented on links between HHS subsystems in stress conditions, impairments to physiological rhythms, and in response to the gender factor. This review presents information on possible measures to prevent the main noncommunicable diseases based on consideration of the role of the HHS and the outcomes of impairments to its functioning. The review also addresses the fact that along with the widely accepted similarity in the hormonal-metabolic factors creating a platform for the development of the main noncommunicable diseases, there are examples of nonsimilarity, a point which requires further research.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. O. Shpakov, Gonadotropins: from Theory to Clinical Practice, Politech-Press, St. Petersburg (2018).

    Google Scholar 

  2. 2.

    L. Gooren, “Androgens and estrogens in their negative feedback action in the hypothalamo-pituitary-testis axis: site of action and evidence of their interaction,” J. Steroid. Biochem., 33, 757–761 (1989).

    CAS  PubMed  Google Scholar 

  3. 3.

    V. M. Dilman and V. N. Anisimov, “Hypothalamic mechanisms of ageing and of specific age pathology. I. Sensitivity threshold of hypothalamo-pituitary complex to homeostatic stimuli in the reproductive system,” Exp. Gerontol., 14, No. 4, 161–174 (1979).

    CAS  PubMed  Google Scholar 

  4. 4.

    J. Miyamoto, T. Matsumoto, H. Shiina, et al., “The pituitary function of androgen receptor constitutes a glucocorticoid production circuit,” Mol. Cell. Biol., 27, 4807–4814 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    S. Proietto, L. Yankelevich, F. M. Villarreal, et al., “American plains vizcacha, Lagostomus maximus, Rodentia, Caviomorpha,” Gen. Comp. Endocrinol., 273, 40–51 (2019).

    CAS  PubMed  Google Scholar 

  6. 6.

    N. Rimon-Dahari, L. Yerushalmi-Heinemann, L. Alyagor, and N. Dekel, “Ovarian folliculogenesis,” Results Probl. Cell. Differ., 58, 167–190 (2016).

    CAS  PubMed  Google Scholar 

  7. 7.

    A. O. Shpakov and K. V. Derkach, “New advances in studies of endogenous regulators of gonadotropin synthesis and secretion,” Ros. Fiziol. Zh., 12, 1409–1427 (2018).

    Google Scholar 

  8. 8.

    Y. Xu, J. Xie, L. Wan, et al., “Follistatin-like 3, an activin A binding protein, is involved in early pregnancy loss,” Biomed. Pharmacother., 121, 109577 (2020).

    CAS  PubMed  Google Scholar 

  9. 9.

    A. O. Shpakov, “Visfatin and its role in the regulation of the reproductive system,” Translyats. Med., 2, 225–236 (2019).

    Google Scholar 

  10. 10.

    H. Darabi, A. Ostovar, A. Raeisi, et al., “The correlation between insulin-like growth factor 1 (IGF-1) and novel adipocytokines in postmenopausal women: A population-based study,” Endocr. Res., 42, No. 3, 191–197 (2017).

    CAS  PubMed  Google Scholar 

  11. 11.

    M. Tyczewska, P. Milecka, M. Szyszka, et al., “Expression profile of Galp, alarin and their receptors in rat adrenal gland,” Adv. Clin. Exp. Med., 28, No. 6, 737–746 (2019).

    PubMed  Google Scholar 

  12. 12.

    A. Makrigiannakis, T. Vrekoussis, E. Zoumakis, et al., “CRH receptors in human reproduction,” Curr. Mol. Pharmacol., 11, No. 1, 81– 87 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    J. Robert, R. J. Handa, and M. J. Weiser, “Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis,” Front. Neuroendocrinol., 35, No. 2, 197–220 (2014).

    Google Scholar 

  14. 14.

    S. N. Kalantaridou, A. Makrigiannakis, E. Zoumakis, and G. P. Chrousos, “Reproductive functions of corticotropin-releasing hormone; research and potential clinical utility of antalarmins CRH receptor type 1 antagonists,” Am. J. Reprod. Immunol., 51, No. 4, 269–74 (2004).

    PubMed  Google Scholar 

  15. 15.

    T. M. Ortiga-Carvalho, M. I. Chiamolera, C. C. Pazos-Moura, and F. E. Wondisford, “Hypothalamus-pituitary-thyroid axis,” Compr. Physiol., 6, No. 3, 1387–4283 (2016).

    PubMed  Google Scholar 

  16. 16.

    R. Hoermann, J. E. M. Midgley, R. Larisch, and J. W. Dietrich, “The role of functional thyroid capacity in pituitary thyroid feedback regulation,” Eur. J. Clin. Invest., 48, No. 10, e13003 (2018).

    PubMed  Google Scholar 

  17. 17.

    V. Di Paolo, C. Mangialardo, C. Zacà, et al., “Thyroid hormones T3 and T4 regulate human luteinized granulosa cells, counteracting apoptosis and promoting cell survival,” J. Endocrinol. Invest., 43m, No. 6, 821–831 (2020),

  18. 18.

    A. H. Van der Spek, O. V. Surovtseva, K. K. Jim, et al., “Regulation of intracellular triiodothyronine is essential for optimal macrophage function,” Endocrinology, 159, No. 5, 2241–2252 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    C. Fekete and R. M. Lechan, “Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions,” Endocrine Rev., 30, No. 2, 159–194 (2014).

    Google Scholar 

  20. 20.

    M. Ghamari-Langroudi, D. Srisai, and R. D. Cone, “Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin,” Proc. Natl. Acad. Sci. USA, 108, 355–360 (2011).

    CAS  PubMed  Google Scholar 

  21. 21.

    A. C. Panveloski-Costa, C. Serrano-Nascimento, P. Bargi-Souza, et al., “Benefi cial effects of thyroid hormone on adipose inflammation and insulin sensitivity of obese Wistar rats,” Physiol. Rep., 6, No. 3, e13550 (2018).

    PubMed Central  Google Scholar 

  22. 22.

    H. E. Bergan-Roller and M. A. Sheridan, “The growth hormone signaling system: Insights into coordinating the anabolic and catabolic actions of growth hormone,” Gen. Comp. Endocrinol., 258, 119–133 (2018).

    CAS  PubMed  Google Scholar 

  23. 23.

    H. E. Bergan-Roller, A. T. Ickstadt, J. D. Kittilson, and M. A. Sheridan, “Insulin and insulin-like growth factor-1 modulate the lipolytic action of growth hormone by altering signal pathway linkages,” Gen. Comp. Endocrinol., 248, 40–48 (2017).

    CAS  PubMed  Google Scholar 

  24. 24.

    H. Qiu, J. K. Yang, and C. Chen, “Influence of insulin on growth hormone secretion, level and growth hormone signalling,” Sheng Li Xue Bao, 69, No. 5, 541–556 (2017).

    PubMed  Google Scholar 

  25. 25.

    G. Mazziotti and A. Giustina, “Glucocorticoids and the regulation of growth hormone secretion,” Nat. Rev. Endocrinol., 9, No. 5, 265–276 (2013).

    CAS  PubMed  Google Scholar 

  26. 26.

    D. M. Huffman, G. Farias Quipildor, K. Mao, et al., “Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of agerelated insulin resistance and IGF-1 decline,” Aging Cell, 1, 181–186 (2016).

    Google Scholar 

  27. 27.

    V. M. Dil’man, Four Models of Medicine, Meditsina, Leningrad (1987).

    Google Scholar 

  28. 28.

    E. H. Gan and R. Quinton, “Physiological significance of the rhythmic secretion of hypothalamic and pituitary hormones,” Prog. Brain Res., 181, 111–126 (2010).

    CAS  PubMed  Google Scholar 

  29. 29.

    B. Gustafson, S. Hedjazifar, S. Gogg, et al., “Insulin resistance and impaired adipogenesis,” Trends Endocrinol. Metab., 4, 193–200 (2015).

    Google Scholar 

  30. 30.

    B. Gustafson, A. Nerstedt, and U. Smith, “Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells,” Nat. Commun., 10, No. 1, 2757 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    E. M. Ràfols, “Adipose tissue: cell heterogeneity and functional diversity,” Endocrinol. Nutr., 61, No. 2, 100–112 (2014).

    Google Scholar 

  32. 32.

    A. Cignarelli, V. A. Genchi, S. Perrini, et al., “Insulin and insulin receptors in adipose tissue development,” Int. J. Mol. Sci., 20, No. 3, 759 (2019).

    CAS  PubMed Central  Google Scholar 

  33. 33.

    M. G. Oyola and R. J. Handa, “Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity,” Stress, 20, No. 5, 476–494 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    A. E. Gaffey, C. S. Bergeman, L. A. Clark, and M. M. Wirth, “Aging and the HPA axis: Stress and resilience in older adults,” Neurosci. Biobehav. Rev., 68, 928–945 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    F. Xiong and L. Zhang, “Role of the hypothalamic-pituitary-adrenal axis in developmental programming of health and disease,” Front. Neuroendocrinol., 34, No. 1, 27–46 (2013).

    CAS  PubMed  Google Scholar 

  36. 36.

    N. C. Vamvakopoulos and G. P. Chrousos, “Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression. Potential implications for the sexual dimorphism of the stress response and immune/infl ammatory reaction,” J. Clin. Invest., 92, 1896–1902 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    R. T. Rubin, M. E. Rhodes, S. O’Toole, and R. K. Czambel, “Sexual diergism of hypothalamo-pituitary-adrenal cortical responses to low-dose physotigmine in elderly vs. young women and men,” Neuropsychopharmacology, 26, No. 5, 672–681 (2002).

    CAS  PubMed  Google Scholar 

  38. 38.

    E. Ferrari and F. Magri, “Role of neuroendocrine pathways in cognitive decline during aging,” Ageing Res. Rev., 7, 225–233 (2008).

    CAS  PubMed  Google Scholar 

  39. 39.

    E. H. Gan and R. Quinton, “Physiological signifi cance of the rhythmic secretion of hypothalamic and pituitary hormones,” Prog. Brain Res., 181, 111–126 (2010).

    CAS  PubMed  Google Scholar 

  40. 40.

    J. Ayuk and M. C. Sheppard, “Does acromegaly enhance mortality?” Rev. Endocr. Metab. Disord., 9, 33–39 (2008).

    PubMed  Google Scholar 

  41. 41.

    R. A. Miller, J. M. Harper, A. Galecki, and D. T. Burke, “Big mice die young: early life body weight predicts longevity in genetically heterogeneous mice,” Aging Cell, 1, 22–29 (2002).

    CAS  PubMed  Google Scholar 

  42. 42.

    M. H. Aguiar-Oliveira, F. T. Oliveira, R. M. Pereira, et al., “Longevity in untreated congenital growth hormone deficiency due to a homozygous mutation in the GHRH receptor gene,” J. Clin. Endocrinol. Metab., 95, 714–21 (2010).

    CAS  PubMed  Google Scholar 

  43. 43.

    J. O. Jørgensen, M. Krag, N. Jessen, et al., “Growth hormone and glucose homeostasis,” Horm. Res., 62, 51–55 (2004).

    PubMed  Google Scholar 

  44. 44.

    M. C. Petersen and G. I. Shulman, “Mechanisms of insulin action and insulin resistance,” Physiol. Rev., 98, No. 4, 2133–2223 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    G. S. Hotamisligil, “Endoplasmic reticulum stress and the infl ammatory basis of metabolic disease,” Cell, 140, 900–917 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    D. E. Lackey and J. M. Olefsky, “Regulation of metabolism by the innate immune system,” Nat. Rev. Endocrinol., 12, 15–28 (2016).

    CAS  PubMed  Google Scholar 

  47. 47.

    J. M. Olefsky and C. K. Glass, “Macrophages, inflammation, and insulin resistance,” Annu. Rev. Physiol., 72, 219–246 (2010).

    CAS  PubMed  Google Scholar 

  48. 48.

    K. F. Petersen, S. Dufour, D. Befroy, et al., “Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes,” Diabetes, 54, 603–608 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    A. W. van den Beld, J. M. Kaufman, M. C. Zillikens, et al., “The physiology of endocrine systems with ageing,” Lancet Diabetes Endocrinol., 6, No. 8, 647–658 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    T. Yoneshiro, S. Aita, M. Matsushita, et al., “Recruited brown adipose tissue as an antiobesity agent in humans,” J. Clin. Invest., 123, 3404–3408 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    L. M. Berstein, “Cancer and heterogeneity of obesity: a potential contribution of brown fat,” Future Oncol., 8, No. 12, 1537–1548 (2012).

    CAS  PubMed  Google Scholar 

  52. 52.

    M. Adamczak and A. Wiecek, “The adipose tissue as an endocrine organ,” Semin. Nephrol., 33, No. 1, 2–13 (2013).

    CAS  PubMed  Google Scholar 

  53. 53.

    M. G. Saklayen, “The global epidemic of the metabolic syndrome,” Curr. Hypertens. Rep., 20, No. 2, 12 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    A. O. Shpakov, Adipokines and Their Role in the Regulation of Reproductive Functions, Politech-Press, St. Petersburg (2018).

    Google Scholar 

  55. 55.

    M. Y. Wang, L. Chen, G. O. Clark, et al., “Leptin therapy in insulin-deficient type I diabetes,” Proc. Natl. Acad. Sci. USA, 107, 4813– 4819 (2010).

    CAS  PubMed  Google Scholar 

  56. 56.

    K. G. Alberti, R. H. Eckel, S. M. Grundy, et al., International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity, “Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity,” Circulation, 120, 1640–1645 (2009).

  57. 57.

    H. G. Burger, G. E. Hale, L. Dennerstein, and D. M. Robertson, “Cycle and hormone changes during perimenopause: the key role of ovarian function,” Menopause, 15, No. 4, Pt. 1, 603–612 (2008).

  58. 58.

    E. A. Lenton, L. Sexton, S. Lee, and I. D. Cooke, “Progressive changes in LH and FSH and LH: FSH ratio in women throughout reproductive life,” Maturitas, 10, No. 1, 35–43 (1988).

    CAS  PubMed  Google Scholar 

  59. 59.

    A. Stefanska, P. Cembrowska, J. Kubacka, et al., “Gonadotropins and their association with the risk of prediabetes and type 2 diabetes in middle-aged postmenopausal women,” Dis. Markers, 2019: 2384069 (2019).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    N. E. Reame, R. P. Kelche, I. Z. Beitins, et al., “Age effects of follicle-stimulating hormone and pulsatile luteinizing hormone secretion across the menstrual cycle of premenopausal women,” J. Clin. Endocrinol. Metab., 81, No. 4, 1512–1518 (1996).

    CAS  PubMed  Google Scholar 

  61. 61.

    H. Vanden Brink, D. M. Robertson, H. Lim, et al., “Associations between antral ovarian follicle dynamics and hormone production throughout the menstrual cycle as women age,” J. Clin. Endocrinol. Metab., 100, No. 12, 4553–4562 (2015).

    Google Scholar 

  62. 62.

    J. C. Prior, “Ovarian aging and the perimenopausal transition: the paradox of endogenous ovarian hyperstimulation,” Endocrine, 26, No. 3, 297–300 (2005).

    CAS  PubMed  Google Scholar 

  63. 63.

    K. C. Dafopoulos, “FSH and LH responses to GnRH after ovariectomy in postmenopausal women,” Clin. Endocrinol., 60, No. 1, 120– 124 (2004).

    CAS  Google Scholar 

  64. 64.

    C. Gérard and K. A. Brown, “Obesity and breast cancer – Role of estrogens and the molecular underpinnings of aromatase regulation in breast adipose tissue,” Mol. Cell. Endocrinol., 466, 15–30 (2018).

    PubMed  Google Scholar 

  65. 65.

    J. D. Veldhuis, “Aging and hormones of the hypothalamo-pituitary axis: gonadotropic axis in men and somatotropic axes in men and women,” Ageing Res. Rev., 7, No. 3, 189–208 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    L. J. Gooren, “Endocrine aspects of ageing in the male,” Mol. Cell. Endocrinol., 145, No. 1–2, 153–159 (1998).

    CAS  PubMed  Google Scholar 

  67. 67.

    W. B. Neaves, L. Johnson, J. C. Porter, et al., “Leydig cell numbers, daily sperm production, and serum gonadotropin levels in aging men,” J. Clin. Endocrinol. Metab., 59, No. 4, 756–763 (1984).

    CAS  PubMed  Google Scholar 

  68. 68.

    W. J. Bremner, M. V. Vitiello, and P. N. Prinz, “Loss of circadian rhythmicity in blood testosterone levels with aging in normal men,” J. Clin. Endocrinol. Metab., 56, No. 6, 1278–1281 (1983).

    CAS  PubMed  Google Scholar 

  69. 69.

    R. Luboshitzky, Z. Shen-Orr, and P. Herer, “Middle-aged men secrete less testosterone at night than young healthy men,” J. Clin. Endocrinol. Metab., 88, No. 7, 3160–31666 (2003).

    CAS  PubMed  Google Scholar 

  70. 70.

    S. J. Winters and P. Troen, “Episodic luteinizing hormone (LH) secretion and the response of LH and follicle-stimulating hormone to LH-releasing hormone in aged men: evidence for coexistent primary testicular insufficiency and an impairment in gonadotropin secretion,” J. Clin. Endocrinol. Metab., 55, No. 3, 560–565 (1982).

    CAS  PubMed  Google Scholar 

  71. 71.

    C. Siemes, L. E. Visser, F. H. de Jong, et al., “Cytochrome P450 3A gene variation, steroid hormone serum levels and prostate cancer- The Rotterdam Study,” Steroids, 75, No. 12, 1024–1032 (2010).

    CAS  PubMed  Google Scholar 

  72. 72.

    M. Barnard, E. A. Mostaghel, R. J. Auchus, and K. H. Storbeck, “The role of adrenal derived androgens in castration resistant prostate cancer,” J. Steroid Biochem. Mol. Biol., 197, 105506 (2019).

    PubMed  Google Scholar 

  73. 73.

    H. Eyre, R. Kahn, and R. M. Robertson, ACS/ADA/AHA Collaborative Writing Committee, “Preventing cancer, cardiovascular disease, and diabetes: a common agenda for the American Cancer Society, the American Diabetes Association and the American Heart Association,” CA Cancer J. Clin., 54, No. 4, 190–207 (2004).

    PubMed  Google Scholar 

  74. 74.

    L. M. Berstein, “Dissimilar associations of same metabolic parameters with main chronic noncommunicable diseases (cancer vs some other NCDs),” Future Oncol., 15, No. 35, 4003–4007 (2019).

    CAS  PubMed  Google Scholar 

  75. 75.

    E. B. Aleksandrova, “Chronic heart failure in patients with arterial hypertension and ischemic heart disease: age and gender characteristics,” Kardiologiya, 53, No. 7, 40–44 (2013).

    CAS  PubMed  Google Scholar 

  76. 76.

    Y. Ruan, Y. Guo, Y. Zheng, et al., “Cardiovascular disease (CVD) and associated risk factors among older adults in six low-and middle- income countries: results from SAGE Wave 1,” BMC Public Health, 18, No. 1, 778 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    A. D. Kaprin, V. V. Starinskii, and G. V. Petrova (eds.), Malignant Tumors in Russia in 2018 (Morbidity and Mortality), P. A. Herzen Institute of Oncology, A Branch of the National Medical Radiology Research Center, Russian Ministry of Health, Moscow (2019).

    Google Scholar 

  78. 78.

    R. Siegel, C. DeSantis, K. Virgo, et al., “Cancer treatment and survivorship statistics,” CA Cancer J. Clin., 62, 220–241 (2012).

    PubMed  Google Scholar 

  79. 79.

    M. F. Barginear, H. Muss, G. Kimmick, et al., “Breast cancer and aging: results of the U13 conference breast cancer panel,” Breast Cancer Res. Treat., 146, No. 1, 1–6 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    B. D. Smith, G. L. Smith, A. Hurria, et al., “Future of cancer incidence in the United States: burdens upon an aging, changing nation,” J. Clin. Oncol., 27, 2758–2765 (2009).

    PubMed  Google Scholar 

  81. 81.

    M. M. Braun, E. A. Overbeek-Wager, and R. J. Grumbo, “Diagnosis and management of endometrial cancer,” Am. Fam. Physician, 93, No. 6, 468–474 (2016).

    PubMed  Google Scholar 

  82. 82.

    S. Ya. Maksimov, A. V. Khadzhimba, E. A. Vyshinskaya, et al., “Cancer of the reproductive organs in youth,” Praktich. Onkol., 18, No. 2, 185–196 (2017).

    Google Scholar 

  83. 83.

    Ya. V. Bokhman, Handbook of Gynecological Oncology, Meditsina, Leningrad (1989).

    Google Scholar 

  84. 84.

    V. W. Setiawan, H. P. Yang, M. C. Pike, et al., “Type I and II endometrial cancers: have they different risk factors?” J. Clin. Oncol., 31, No. 20, 2607–2618 (2013).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    M. A. Onstad, R. E. Schmandt, and K. H. Lu, “Addressing the role of obesity in endometrial cancer risk, prevention, and treatment,” J. Clin. Oncol., 34, No. 35, 4225–4230 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    A. Talhouk, M. K. McConechy, S. Leung, et al., “Confirmation of ProMisE: A simple, genomics-based clinical classifier for endometrial cancer,” Cancer, 123, No. 5, 802–813 (2017).

    CAS  PubMed  Google Scholar 

  87. 87.

    L. M. Berstein, A. G. Iyevleva, A. O. Ivantsov, et al., “Endocrinology of obese and nonobese endometrial cancer patients: is there role of tumor molecular-biological type?” Future Oncol., 15, No. 12, 1335– 1346 (2019).

    CAS  PubMed  Google Scholar 

  88. 88.

    K. A. Herget, D. P. Patel, H. A. Hanson, et al., “Recent decline in prostate cancer incidence in the United States, by age, stage, and Gleason score,” Cancer Med., 5, No. 1, 136–114 (2016).

    PubMed  Google Scholar 

  89. 89.

    V. I. Chissov and I. G. Rusakov, “Incidence of prostate cancer in the Russian Federation,” Eksper. Klin. Urol., No. 2–3, 6–7 (2011).

    Google Scholar 

  90. 90.

    R. Dankner, P. Boffetta, L. Keinan-Boker, et al., “Diabetes, prostate cancer screening and risk of low- and high-grade prostate cancer: an 11 year historical population follow-up study of more than 1 million men,” Diabetologia, 59, No. 8, 1683–1691 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    K. Esposito, P. Chiodini, A. Colao, et al., “Metabolic syndrome and risk of cancer a systematic review and meta-analysis,” Diabetes Care, 35, No. 11, 2402–2411 (2012).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    A. E. Harvey, L. M. Lashinger, and S. D. Hursting, “The growing challenge of obesity and cancer: an infl ammatory issue,” Ann. N. Y. Acad. Sci., 1229, 45–52 (2011).

    CAS  PubMed  Google Scholar 

  93. 93.

    D. Hong, Y. S. Kim, E. S. Son, et al., “Total testosterone and sex hormone-binding globulin are associated with metabolic syndrome independent of age and body mass index in Korean men,” Maturitas, 74, No. 2, 148–153 (2013).

    CAS  PubMed  Google Scholar 

  94. 94.

    P. Singh, J. M. Alex, and F. Bast, “Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer,” Med. Oncol., 31, No. 1, 805 (2014).

    PubMed  Google Scholar 

  95. 95.

    H. Nandeesha, “Insulin: a novel agent in the pathogenesis of prostate cancer,” Int. Urol. Nephrol, 41, No. 2, 267–272 (2009).

    CAS  PubMed  Google Scholar 

  96. 96.

    L. M. Berstein, “Role of endocrine-genotoxic switchings in cancer and other human diseases: basic triad,” Adv. Exp. Med. Biol., 630, 35–51 (2008).

    CAS  PubMed  Google Scholar 

  97. 97.

    A. Kasperski and R. Kasperska, “Bioenergetics of life, disease and death phenomena,” Theory Biosci., 137, No. 2, 155–168 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    N. Abolhassani, J. Leon, Z. Sheng, et al., “Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer’s disease brain,” Mech. Aging Dev., 161, 95–104 (2017).

    CAS  PubMed  Google Scholar 

  99. 99.

    V. N. Anisimov, “Metformin for aging and cancer prevention,” Aging (Albany NY), 2, No. 11, 760–777 (2010).

    CAS  Google Scholar 

  100. 100.

    L. M. Berstein, “Clinical usage of hypolipidemic and antidiabetic drugs in the prevention and treatment of cancer,” Cancer Lett., 224, No. 2, 203–212 (2005).

    CAS  PubMed  Google Scholar 

  101. 101.

    P. Zhu, X. F. Pan, L. Sheng, et al., “Cigarette smoking, diabetes, and diabetes complications: call for urgent action,” Curr. Diab. Rep., 17, No. 9, 78 (2017).

    PubMed  Google Scholar 

  102. 102.

    D. Zhu, H. F. Chung, N. Pandeya, et al., “Relationships between intensity, duration, cumulative dose, and timing of smoking with age at menopause: A pooled analysis of individual data from 17 observational studies,” PLoS Med., 15, No. 11, e1002704 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to L. M. Berstein.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 106, No. 6, pp. 667–682, Yune, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berstein, L.M., Tsyrlina, E.V. The Hypothalamo-Hypophyseal System: Age and Major Noncommunicable Diseases (malignant neoplasms of hormonedependent tissues, cardiovascular, and type 2 diabetes mellitus). Neurosci Behav Physi 51, 270–278 (2021).

Download citation


  • hypothalamo-hypophyseal system
  • age
  • main noncommunicable diseases of humans
  • predisposition
  • approaches to disease prevention