A Mathematical Model of ATP Secretion by Type II Taste Cells

The functional unit of the taste system in mammals is the taste bud, which is a heterogeneous population of 50–80 different cells, including types I, II, and III taste cells. Apart from recognizing taste molecules, taste cells encode sensory information in the form of stimulus-dependent secretion of the afferent neurotransmitter stimulating the taste nerves. Afferent neurotransmission in type II taste cells has many characteristics setting them apart from other exteroreceptor cells operating in vertebrate sensory organs. Thus, type II cells use ATP as neurotransmitter, released via ATP-permeable ion channels. Although taste cells lack axons, type II cells are electrically excitable and the neurotransmitter secretion process is controlled by an action potential. We developed a mathematical model of ATP secretion through a potential-dependent ATP-permeable ion channel and analyzed the potential dependence of secretion in the steady-state case and on stimulation of the cell with pulses. The patterns of ATP secretion found here led to the conclusion that as compared with control of ATP release by a graduated receptor potential, the electrical excitability of taste cells widens the dynamic range of perceived taste stimuli and provides greater reliability of synaptic transmission and confers quantum properties upon it.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. D. Roper and N. Chaudhari, “Taste buds: cells, signals and synapses,” Nat. Rev. Neurosci., 18, 485–497 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Y. A. Huang, Y. Maruyama, R. Stimac, and S. D. Roper, “Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste,” J. Physiol., 586, 2903–2912 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    Y. Oka, M. Butnaru, L. von Buchholtz, et al., “High salt recruits aversive taste pathways,” Nature, 494, 472–475 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    J. Chandrashekar, M. A. Hoon, N. J. Ryba, and C. S. Zuker, “The receptors and cells for mammalian taste,” Nature, 444, 288–294 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    M. Behrens and W. Meyerhof, “Vertebrate bitter taste receptors: Keys for survival in changing environments,” J. Agric. Food Chem., 66, 2204–2213 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Y. Zhang, M. A. Hoon, J. Chandrashekar, et al., “Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways,” Cell, 112, 293–301 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    M. J. Berridge, “The inositol trisphosphate/calcium signaling pathway in health and disease,” Physiol. Rev., 96, 1261–1296 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    T. R. Clapp, L. M. Stone, R. F. Margolskee, and S. C. Kinnamon, “Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction,” BMC Neurosci., 2, 6 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    M. A. Miyoshi, K. Abe, and Y. Emori, “IP(3) receptor type 3 and PLCbeta2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells,” Chem. Senses, 26, 259–265 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    C. A. Perez, L. Huang, M. Rong, et al., “A transient receptor potential channel expressed in taste receptor cells,” Nat. Neurosci., 5, 1169–1176 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    T. Hofmann, V. Chubanov, T. Gudermann, and C. Montell, “TRPM5 is a voltage-modulated and Ca2+-activated monovalent selective cation channel,” Curr. Biol., 13, 1153–1158 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    N. Gao, M. Lu, F. Echeverri, et al., “Voltage-gated sodium channels in taste bud cells,” BMC Neurosci., 10, 20 (2009).

    Article  Google Scholar 

  13. 13.

    R. Yoshida, K. Sanematsu, N. Shigemura, et al., “Taste receptor cells responding with action potentials to taste stimuli and their molecular expression of taste related genes,” Chem. Senses, 30, Suppl. 1, i19–i20 (2005).

  14. 14.

    R. I. Wilson and Z. F. Mainen, “Early events in olfactory processing,” Annu. Rev. Neurosci., 29, 163–201 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    G. Matthews and P. Fuchs, “The diverse roles of ribbon synapses in sensory neurotransmission,” Nat. Rev. Neurosci., 11, 812–822 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    T. E. Finger, V. Danilova, J. Barrows, et al., “ATP signaling is crucial for communication from taste buds to gustatory nerves,” Science, 310, 1495–1499 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    R. A. Romanov, O. A. Rogachevskaja, M. F. Bystrova, et al., “Afferent neurotransmission mediated by hemichannels in mammalian taste cells,” EMBO J., 26, 657–667 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    R. A. Romanov, O. A. Rogachevskaja, A. A. Khokhlov, and S. S. Kolesnikov, “Voltage dependence of ATP secretion in mammalian taste cells,” J. Gen. Physiol., 132, 731–744 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    A. Taruno, V. Vingtdeux, M. Ohmoto, et al., “CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes,” Nature, 495, 223–226 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Z. Ma, A. Taruno, M. Ohmoto, et al., “CALHM3 is essential for rapid ion channel-mediated purinergic neurotransmission of GPCRmediated tastes,” Neuron, 98, 547–561 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Z. Ma, J. E. Tanis, A. Taruno, and J. K. Foskett, “Calcium homeostasis modulator (CALHM) ion channels,” Pflügers Arch., 468, 395–403 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    B. Hille, Ion Channels of Excitable Membranes, Sinauer Associates, Sunderland, Massachusetts, USA (2001), 3rd ed.

  23. 23.

    D. Gonzalez, J. M. Gomez-Hernandez, and L. C. Barrio, “Molecular basis of voltage dependence of connexin channels: An integrative appraisal,” Prog. Biophys. Mol. Biol, 94, 66–106 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    F. Bezanilla, “The voltage sensor in voltage-dependent ion channels,” Physiol. Rev., 80, 555–592 (2000).

    CAS  Article  Google Scholar 

  25. 25.

    Z. Ma, A. P. Siebert, K. H. Cheung, et al., “Calcium homeostasis modulator 1 (CALHM1) is the pore-forming subunit of an ion channel that mediates extracellular Ca2+ regulation of neuronal excitability,” Proc. Natl. Acad. Sci. USA, 109, E1963–E1971 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    R. A. Romanov, O. A. Rogachevskaja, M. F. Bystrova, and S. S. Kolesnikov, “Electrical excitability of taste cells. Mechanisms and possible physiological significance,” Biochemistry (Moscow) Supplement. Series A: Membrane and Cell Biology, 6, 169–185 (2012).

    Article  Google Scholar 

  27. 27.

    Z. Ma, W. T. Saung, and J. K. Foskett, “Action potentials and ion conductances in wild-type and CALHM1-knockout Type II taste cells,” J. Neurophysiol, 117, 1865–1876 (2017).

    Article  Google Scholar 

  28. 28.

    Z. Zhang, Z. Zhao, R. Margolskee, and E. Liman, “The transduction channel TRPM5 is gated by intracellular calcium in taste cells,” J. Neurosci., 27, 5777–5786 (2007).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. S. Kolesnikov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 106, No. 4, pp. 521–532, April, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, S.S. A Mathematical Model of ATP Secretion by Type II Taste Cells. Neurosci Behav Physi 51, 238–244 (2021). https://doi.org/10.1007/s11055-021-01062-w

Download citation

Keywords

  • taste cells
  • ATP secretion
  • ATP-permeable channels
  • mathematical modeling