Neuroinfl ammatory Processes Affect Structural Changes in the Amygdala of Rats in a Lithium-Pilocarpine Model of Epilepsy

Temporal epilepsy is a severe neuromental disorder which is difficult to treat and whose pathogenesis is presumptively linked with the development of neuroinflammation, astrogliosis, and neuron death. The least studied of these processes occur in the amygdala, a part of the brain playing an important role in epileptogenesis. This study analyzes the structural and biochemical changes occurring in the basolateral part of the amygdala in a lithium-pilocarpine model of temporal epilepsy. Status epilepticus was induced in Wistar rats aged 7–8 weeks. Two subgroups were identified: one with severe, prolonged convulsions and one with mild short-lived convulsions. This separation was linked with the relationship between the probability of developing spontaneous recurrent convulsions in the chronic phase of the model on the one hand and the severity and duration of convulsions during the period of status epilepticus on the other. Histological studies were performed during the latent and chronic periods of the model (3 and 7 days and 2 months after administration of pilocarpine) using light and electron microscopy methods, as well as immunohistochemical analysis of the distribution of neuronal (Fox3) and glial (GFAP, Iba1) markers in cells. The expression of the genes for the proinflammatory cytokines interleukin-1β (Il1b) and tumor necrosis factor α (Tnfa) was analyzed by reverse transcription and the real-time polymerase chain reaction on day 7 after status epilepticus. During the first week after administration of pilocarpine into the basolateral amygdala, rats with prolonged convulsions showed decreases in the number of neurons and significant increases in the numbers of astrocytes and microglial cells. Rats with short-term convulsions showed no glial reaction and cell death was less extensive. Ultrastructural studies demonstrated accumulations of lysosomes and other neurodegenerative changes in amygdalar neurons of rats with prolonged convulsions. These abnormalities were accompanied by increased expression of the Il1b and Tnfa genes, pointing to the development of neuroinflammatory processes. Changes found in amygdalar cells in rats with severe long-lasting convulsions could be among the key mechanisms of epileptogenesis and associated comorbid behavioral abnormalities.

This is a preview of subscription content, log in to check access.


  1. 1.

    K. Pierzchala, “Pharmacoresistant epilepsy – epidemiology and current studies,” Neurol. Neurochir. Pol., 44, No. 3, 285–290 (2010).

    Article  Google Scholar 

  2. 2.

    J. Wetherington, G. Serrano, and R. Dingledine, “Astrocytes in the epileptic brain,” Neuron, 58, 168–178 (2008), doi:

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    G. Seifert, G. Carmignoto, and C. Steinhauser, “Astrocyte dysfunction in epilepsy,” Brain Res. Rev., 63, No. 1–2, 212–221 (2010), doi:

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    S. Robel, S. C. Buckingham, J. L. Boni, et al., “Reactive astrogliosis causes the development of spontaneous seizures,” J. Neurosci., 35, No. 8, 3330–3345 (2015), doi:

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    O. Devinsky, A. Vezzani, S. Najjar, et al., “Glia and epilepsy: excitability and inflammation,” Trends Neurosci., 36, No. 3, 174–184 (2013), doi:

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    R. J. Racine, “Modifi cation of seizure activity by electrical stimulation. II. Motor seizure,” Electroencephalogr. Clin. Neurophysiol., 32, No. 3, 281–294 (1972).

    CAS  Article  Google Scholar 

  7. 7.

    V. Aroniadou-Anderjaska, B. Fritsch, F. Qashu, and M. F. Braga, “Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy,” Epilepsy Res., 78, No. 2–3, 102–116 (2008), doi:

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    A. A. Capizzano, H. Kawasaki, R. K. Sainju, et al., “Amygdala enlargement in mesial temporal lobe epilepsy: an alternative imaging presentation of limbic epilepsy,” Neuroradiology, 61, 119–127 (2018), doi:

    Article  PubMed  Google Scholar 

  9. 9.

    J. C. Moura, D. P. Tirapelli, L. Neder, et al., “Amygdala gene expression of NMDA and GABA(A) receptors in patients with mesial temporal lobe epilepsy,” Hippocampus, 22, No. 1, 92–97 (2012), doi:

  10. 10.

    D. Yilmazer-Hanke, E. O’Loughlin, and K. McDermott, “Contribution of amygdala pathology to comorbid emotional disturbances in temporal lobe epilepsy,” J. Neurosci. Res., 94, No. 6, 486–503 (2016), doi:

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    G. Curia, D. Longo, G. Biagini, et al., “The pilocarpine model of temporal lobe epilepsy,” J. Neurosci. Meth., 172, No. 2, 143–157 (2008), doi:

    CAS  Article  Google Scholar 

  12. 12.

    A. Swijsen, K. Nelissen, D. Janssen, et al., “Validation of reference genes for quantitative real-time PCR studies in the dentate gyrus after experimental febrile seizures,” BMC Res. Notes, 5, 685 (2012), doi:

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) Method,” Methods, 25, No. 4, 402–408 (2001).

  14. 14.

    G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego (1998), 4th ed.

  15. 15.

    D. S. Vasilev, N. L. Tumanova, K. Kh. Kim, et al., “Transient morphological alterations in the hippocampus after pentylenetetrazole-induced seizures in rats,” Neurochem. Res., 43, No. 8, 1671–1682 (2018), doi:

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    S. Graebenitz, J. Lesting, L. Sosulina, et al., “Alteration of NMDA receptor-mediated synaptic interactions in the lateral amygdala associated with seizure activity in a mouse model of chronic temporal lobe epilepsy,” Epilepsia, 51, No. 9, 1754–1762 (2010), doi:

  17. 17.

    F. Qashu, T. H. Figueiredo, V. Aroniadou-Anderjaska, et al., “Diazepam administration after prolonged status epilepticus reduces neurodegeneration in the amygdala but not in the hippocampus during epileptogenesis,” Amino Acids, 38, No. 1, 189–197 (2010), doi:

  18. 18.

    A. Pitkanen, J. Tuunanen, R. Kalviainen, et al., “Amygdala damage in experimental and human temporal lobe epilepsy,” Epilepsy Res., 32, 233–253 (1998).

    CAS  Article  Google Scholar 

  19. 19.

    L. T. van Elst, M. Groffmann, D. Ebert, and A. Schulze-Bonhage, “Amygdala volume loss in patients with dysphoric disorder of epilepsy,” Epilepsy Behav., 16, 105–112 (2009), doi:

    Article  PubMed  Google Scholar 

  20. 20.

    R. Benini and M. Avoli, “Altered inhibition in lateral amygdala networks in a rat model of temporal lobe epilepsy,” J. Neurophysiol.,95, 2143–254 (2006).

  21. 21.

    Chen Ling-Lin, Feng Hang-Feng, Mao Xue-Xia, et al., “One hour of pilocarpine-induced status epilepticus is suffi cient to develop chronic epilepsy in mice, and is associated with mossy fi ber sprouting but not neuronal death,” Neurosci. Bull., 29, No. 3, 295–302 (2013), doi:

    CAS  Article  Google Scholar 

  22. 22.

    K. Borges, M. Gearing, D. L. McDermott, et al., “Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model,” Exp. Neurol., 182, No. 1, 21–34 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    N. P. Turrin and S. Rivest, “Innate immune reaction in response to seizures: implications for the neuropathology associated with epilepsy,” Neurobiol. Dis., 16, No. 2, 321–334 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    K. Spanhel, K. Wagner, M. J. Geiger, et al., “Flashbulb memories: Is the amygdala central? An investigation of patients with amygdalar damage,” Neuropsychologia, 111, 163–171 (2018), doi:

    Article  PubMed  Google Scholar 

  25. 25.

    K. Usui, K. Terada, N. Usui, et al., “Working memory deficit in drug-resistant epilepsy with an amygdala lesion,” Epilepsy Behav. Case Rep., 10, 86–91 (2018), doi:

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    J. W. Koo and R. S. Duman, “Interleukin-1 receptor null mutant mice show decreased anxiety-like behavior and enhanced fear memory,” Neurosci. Lett., 456, No. 1, 39–43 (2009), doi:

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    N. Castanon, R. M. Bluthe, and R. Dantzer, “Chronic treatment with the atypical antidepressant tianeptine attenuates sickness behavior induced by peripheral but not central lipopolysaccharide and interleukin-1beta in the rat,” Psychopharmacology (Berlin), 154, No. 1, 50–60 (2001).

  28. 28.

    C. Song, D. F. Horrobin, and B. E. Leonard, “The comparison of changes in behavior, neurochemistry, endocrine, and immune functions after different routes, doses and durations of administrations of IL-1beta in rats,” Pharmacopsychiatry, 39, No. 3, 88–99 (2006), doi:

Download references

Author information



Corresponding author

Correspondence to D. S. Vasilev.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 105, No. 6, pp. 694–706, June, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasilev, D.S., Tumanova, N.L., Kovalenko, A.A. et al. Neuroinfl ammatory Processes Affect Structural Changes in the Amygdala of Rats in a Lithium-Pilocarpine Model of Epilepsy. Neurosci Behav Physi (2020).

Download citation


  • amygdala
  • lithium-pilocarpine model
  • temporal epilepsy
  • convulsions
  • neuroinfl ammation
  • glial reaction