Neuroanatomical Features of the Brain in Juvenile Shiftlike Schizophrenia: Morphometry of the Gray Matter of the Prefrontal Cortex and Subcortical Structures

Objectives. To identify the neuroanatomical characteristics of the gray matter in individual areas of the prefrontal cortex (PFC) and a number of subcortical formations in patients with juvenile shiftlike schizophrenia (ICD-10, F20) Materials and methods. A total of 43 patients and 54 mentally healthy men, mean age 22 years, were studied. The main methods were psychopathological investigations and MRI brain scans producing high-resolution T1-weighted images. Results. As compared with the control group, the group of patients with schizophrenia showed a decrease in the thickness of the gray matter in all segments of the prefrontal cortex studied, though no between-group differences in the volume of the subcortical formations were seen. No statistically significant correlations between structural changes and measures of the severity of psychopathological disorders were found. Conclusions. The data obtained from these studies show that structural anomalies in the frontal areas of the brain in juvenile shiftlike schizophrenia are not linked with the severity of psychopathological symptoms.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    T. G. Van Erp, D. P. Hibar, J. M. Rasmussen, et al., “Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium,” Mol. Psychiatry, 21, No. 4, 547–553 (2016), https://doi.org/10.1038/mp.2015.63.

    PubMed  Article  Google Scholar 

  2. 2.

    T. G. M. van Erp, E. Walton, D. P. Hibar, et al., “Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium,” Biol. Psychiatry, 18, 31517–31518 (2018).

    Google Scholar 

  3. 3.

    R. McCarley, C. Wible, M. Frumin, et al., “MRI anatomy of schizophrenia,” Biol. Psychiatry, 45, No. 9, 1099–1119 (1999), https://doi.org/10.1016/s0006-3223(99)00018-9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    D. R. Weinberger, “Schizophrenia, the prefrontal cortex, and a mechanism of genetic susceptibility,” Eur. Psychiatry, 17(Suppl. 4), 355–362 (2002), https://doi.org/10.1016/s0924-9338(03)00080-4.

    Article  Google Scholar 

  5. 5.

    T. Sakurai, N. Gamo, T. Hikida, et al., “Converging models of schizophrenia – network alterations of prefrontal cortex underlying cognitive impairments,” Prog. Neurobiol., 134, 178–201 (2015), https://doi.org/10.1016/j.pneurobio.2015.09.010.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    V. M. Goghari, A. W. Macdonald 3rd, and S. R. Sponheim, “Relationship between prefrontal gray matter volumes and working memory performance in schizophrenia: a family study,” Schizophr. Res., 153, No. 1–3, 113–121 (2014), https://doi.org/10.1016/j.schres.2014.01.032.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    J. J. Levitt, L. Bobrow, D. Lucia, and P. Srinivasan, “A selective review of volumetric and morphometric imaging in schizophrenia,” Curr. Top. Behav. Neurosci., 4, 243–281 (2010), https://doi.org/10.1007/7854_2010_53.

    PubMed  Article  Google Scholar 

  8. 8.

    B. Brent, H. Thermenos, M. Keshavan, and L. Seidman, “Gray matter alterations in schizophrenia high-risk youth and early-onset schizophrenia: A review of structural MRI findings,” Child Adolesc. Psychiatr. Clin. N. Am., 22, No. 4, 689–714 (2013), https://doi.org/10.1016/j.chc.2013.06.003.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    B. Dietsche, T. Kircher, and I. Falkenberg, “Structural brain changes in schizophrenia at different stages of the illness: A selective review of longitudinal magnetic resonance imaging studies,” Aust. N. Z. J. Psychiatry, 51, No. 5, 500–508 (2017), https://doi.org/10.1177/0004867417699473.

    PubMed  Article  Google Scholar 

  10. 10.

    H. Witthaus, C. Kaufmann, G. Bohner, et al., “Gray matter abnormalities in subjects at ultra-high risk for schizophrenia and first-episode schizophrenic patients compared to healthy controls,” Psychiatry Res., 173, No. 3, 163–169 (2009), https://doi.org/10.1016/j.pscychresns.2008.08.002.

    PubMed  Article  Google Scholar 

  11. 11.

    H. W. Thermenos, M. S. Keshavan, R. J. Juelich, et al., “A review of neuroimaging studies of young relatives of individuals with schizophrenia: a developmental perspective from schizotaxia to schizophrenia,” Am J. Med. Genet. B Neuropsychiatr. Genet., 162B, No. 7, 604–635 (2013), https://doi.org/10.1002/ajmg.b.32170.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    W. Zhang, W. Deng, L. Yao, et al., “Brain structural abnormalities in a group of never-medicated patients with long-term schizophrenia,” Am. J. Psychiatry, 172, No. 10, 995–1003 (2015), https://doi.org/10.1176/appi.ajp.2015.14091108.

    PubMed  Article  Google Scholar 

  13. 13.

    T. Ohtani, E. Del Re, J. J. Levitt, et al., “Progressive symptom-associated prefrontal volume loss occurs in first-episode schizophrenia but not in affective psychosis,” Brain Struct. Funct., 223, No. 6, 2879–2892 (2018), https://doi.org/10.1007/s00429-018-1634-0.

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    M. Chang, F. Y. Womer, C. Bai, et al., “Voxel-based morphometry in individuals at genetic high risk for schizophrenia and patientswith schizophrenia during their first episode of psychosis,” PLoS One, 11, No. 10, e0163749 (2016), https://doi.org/10.1371/journal.pone.0163749.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    M. E. Shenton, C. C. Dickey, M. Frumin, and R. W. McCarley, “A review of MRI findings in schizophrenia,” Schizophr. Res., 49, No. 1–2, 1–52 (2001), https://doi.org/10.1016/s0920-9964(01)00163-3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    A. M. Shepherd, K. R. Laurens, S. L. Matheson, et al., “Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia,” Neurosci. Biobehav. Rev., 36, No. 4, 1342–1356 (2012), https://doi.org/10.1016/j.neubiorev.2011.12.015.

    PubMed  Article  Google Scholar 

  17. 17.

    V. G. Kaleda, I. S. Lebedeva, A. O. Yakimov, et al., “Structuralfunctional characteristics of the brain in juvenile patients in remission after a first episode of endogenous psychosis,” Zh. Nevrol. Psikhiat., 111, No. 10, 18–22 (2011).

    CAS  Google Scholar 

  18. 18.

    B. Fischl, “Free Surfer,” Neuroimage, 62, 774–781 (2012), https://doi.org/10.1016/j.neuroimage.2012.01.021.

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    B. Fischl, D. H. Salat, E. Busa, et al., “Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain,” Neuron, 33, 341–355 (2002), https://doi.org/10.1016/s0896-6273(02)00569-x.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    B. Fischl, D. H. Salat, A. J. van der Kouwe, et al., “Sequence-independent segmentation of magnetic resonance images,” Neuroimage, 23, 69–84 (2004), https://doi.org/10.1016/s0896-6273(02)00569-x.

    Article  Google Scholar 

  21. 21.

    F. Segonne, A. M. Dale, E. Busa, et al., “A hybrid approach to the skull stripping problem in MRI,” Neuroimage, 22, 1060–1075 (2004), https://doi.org/10.1016/j.neuroimage.2004.03.032.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    A. M. Dale and M. I. Sereno, “Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach,” J. Cogn. Neurosci., 5, 162–176 (1993), https://doi.org/10.1162/jocn.1993.5.2.162.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    A. M. Dale, B. Fischl, and M. I. Sereno, “Cortical surface-based analysis. I. Segmentation and surface reconstruction,” Neuroimage,9, 179–794 (1999), https://doi.org/10.1006/nimg.1998.0395.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    B. Fischl, M. I. Sereno, and A. M. Dale, “Cortical surface-based analysis. II: Infl ation, fl attening, and a surface-based coordinate system,” Neuroimage, 9, 195–207 (1999).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    B. Fischl, A. van der Kouwe, C. Destrieux, et al., “Automatically parcellating the human cerebral cortex,” Cereb. Cortex, 14, 11–22 (2004), https://doi.org/10.1093/cercor/bhg087.

    PubMed  Article  Google Scholar 

  26. 26.

    R. S. Desikan, F. Segonne, B. Fischl, et al., “An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest,” Neuroimage, 31, 968–980 (2006), https://doi.org/10.1016/j.neuroimage.2006.01.021.

    PubMed  Article  Google Scholar 

  27. 27.

    S. Holm, “A simple sequentially rejective multiple test procedure,” Scand. J. Statistics, 6, 65–70 (1979).

    Google Scholar 

  28. 28.

    R. Wolf, A. Hose, K. Frasch, et al., “Volumetric abnormalities associated with cognitive defi cits in patients with schizophrenia,” Eur. Psychiatry, 23, 541–548 (2008), https://doi.org/10.1016/j.eurpsy.2008.02.002.

    PubMed  Article  Google Scholar 

  29. 29.

    H. Witthaus, C. Kaufmann, G. Bohner, et al., “Gray matter abnormalities in subjects at ultra-high risk for schizophrenia and first-episode schizophrenic patients compared to healthy controls,” Psychiatry Res., 173, No. 3, 163–169 (2009), https://doi.org/10.1016/j.pscychresns.2008.08.002.

    PubMed  Article  Google Scholar 

  30. 30.

    N. C. Andreasen, D. Liu, S. Ziebell, et al., “Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: A prospective longitudinal MRI study,” Am. J. Psychiatry, 170, No. 6, 609–615 (2013), https://doi.org/10.1176/appi.ajp.2013.12050674.

    PubMed  Article  Google Scholar 

  31. 31.

    Y. Yue, L. Kong, J. Wang, et al., “Regional abnormality of grey matter in schizophrenia: Effect from the illness or treatment?” PLoS One, 11, No. 1, e0147204 (2016), https://doi.org/10.1371/journal.pone.0147204.

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    L. Tomelleri, J. Jogia, C. Perlini, et al., Neuroimaging Network of the ECNP networks initiative, “Brain structural changes associated with chronicity and antipsychotic treatment in schizophrenia,” Eur. Neuropsychopharmacol., 19, No. 12, 835–840 (2009), https://doi.org/10.1016/j.euroneuro.2009.07.007.

  33. 33.

    J. A. Lieberman, G. D. Tollefson, C. Charles, et al., HGDH Study Group, “Antipsychotic drug effects on brain morphology in first-episode psychosis,” Arch. Gen. Psychiatry, 62, No. 4, 361–370 (2005), https://doi.org/10.1001/archpsyc.62.4.361.

  34. 34.

    U. S. Torres, F. L. Duran, M. S. Schaufelberger, et al., “Patterns of regional gray matter loss at different stages of schizophrenia: A multisite, crosssectional VBM study in first-episode and chronic illness,” NeuroImage Clin, 12, 1–15 (2016), https://doi.org/10.1016/j.nicl.2016.06.002.

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    G. Boonstra, W. Cahn, H. G. Schnack, et al., “Duration of untreated illness in schizophrenia is not associated with 5-year brain volume change,” Schizophr. Res., 132, No. 1, 84–90 (2011), https://doi.org/10.1016/j.schres.2011.07.018.

    PubMed  Article  Google Scholar 

  36. 36.

    S. Lui, W. Deng, X. Huang, et al., “Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study,” Am. J. Psychiatry, 166, No. 2, 196–205 (2009), https://doi.org/10.1176/appi.ajp.2008.08020183.

    PubMed  Article  Google Scholar 

  37. 37.

    N. Koutsouleris, C. Gaser, M. Jager, et al., “Structural correlates of psychopathological symptom dimensions in schizophrenia: a voxel-based morphometric study,” Neuroimage, 39, No. 4, 1600–1612 (2008), https://doi.org/10.1016/j.neuroimage.2007.10.029.

    PubMed  Article  Google Scholar 

  38. 38.

    E. Walton, D. P. Hibar, T. G. M. van Erp, et al., “Prefrontal cortical thinning links to negative symptoms in schizophrenia via the ENIGMA consortium,” Psychol. Med., 48, No. 1, 82–94 (2018), https://doi.org/10.1017/s0033291717001283.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    J. L. Padmanabhan, N. Tandon, C. S. Haller, et al., “Correlations between brain structure and symptom dimensions of psychosis in schizophrenia, schizoaffective, and psychotic bipolar I disorders,” Schizophr. Bull., 41, No. 1, 154–162 (2015), https://doi.org/10.1093/schbul/sbu075.

    PubMed  Article  Google Scholar 

  40. 40.

    I. I. Gottesman and T. D. Gould, “The endophenotype concept in psychiatry: etymology and strategic intentions,” Am. J. Psychiatry, 160, No. 4, 636–645 (2003), https://doi.org/10.1176/appi.ajp.160.4.636.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. G. Kaleda.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 119, No. 8, Iss. 1, pp. 7–11, August, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaleda, V.G., Bozjko, O.V., Akhadov, T.A. et al. Neuroanatomical Features of the Brain in Juvenile Shiftlike Schizophrenia: Morphometry of the Gray Matter of the Prefrontal Cortex and Subcortical Structures. Neurosci Behav Physi 50, 541–545 (2020). https://doi.org/10.1007/s11055-020-00934-x

Download citation

Keywords

  • juvenile shiftlike schizophrenia
  • magnetic resonance tomography (MRI scans)
  • prefrontal cortex
  • subcortical formations
  • PANSS