Molecular Biomarkers in the Cerebrospinal Fluid in Multiple Sclerosis

Multiple sclerosis (MS) is a chronic autoimmune disease affecting the spinal cord and brain. Detection of the disease at its initial stages is a difficult task as the causes and mechanisms of the manifestations of the disease remain unclear. Diagnosis of MS is a complex process. Studies of the molecular mechanisms of the disease and the search for biomarkers are among the key directions in the diagnosis of the disease. This review addresses potential biomarkers for multiple sclerosis detected in the cerebrospinal fluid.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. M. Goldenberg, “Multiple sclerosis review,” Pharmac. Ther., 37, No. 3, 175–184 (2012).

    Google Scholar 

  2. 2.

    I. Loma and R. Heyman, “Multiple sclerosis: pathogenesis and treatment,” Curr. Neuropharmacol., 9, No. 3, 409–416 (2011), https://doi.org/10.2174/157015911796557911.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    A. Katdare and M. Ursekar, “Systematic imaging review: Multiple sclerosis,” Ann. Ind. Acad. Neurol., 18, Suppl. 1, 24–29 (2015), https://doi.org/10.4103/0972-2327.164821.

    Google Scholar 

  4. 4.

    B. R. Sajja, J. S. Wolinsky, and P. A. Narayana, “Proton magnetic resonance spectroscopy in multiple sclerosis,” Neuroimaging Clin. N. Am., 19, No. 1, 45–58 (2009), https://doi.org/10.1016/j.nic.2008.08.002.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    P. A. Gourraud, J. P. McElroy, S. J. Caillier, et al., “Aggregation of multiple sclerosis genetic risk variants in multiple and single case families,” Ann. Neurol., 69, No. 1, 65–74 (2011), https://doi.org/10.1002/ana.22323.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    P. Sundström, P. Juto, G. Wadell, et al., “An altered immune response to Epstein–Barr virus in multiple sclerosis: A prospective study,” Neurology, 62, 2277–2282 (2004), https://doi.org/10.1212/01.WNL.0000130496.51156.D7.

    PubMed  Google Scholar 

  7. 7.

    J. M. Nielsen, T. Korteweg, F. Barkhof, et al., “Overdiagnosis of multiple sclerosis and magnetic resonance imaging criteria,” Ann. Neurol., 58, 781–783 (2005), https://doi.org/10.1002/ana.20632.

    PubMed  Google Scholar 

  8. 8.

    D. Miller, F. Barkhof, X. Montalban, et al., “Clinically isolated syndromes suggestive of multiple sclerosis. Part I: Natural history, pathogenesis, diagnosis, and prognosis,” Lancet Neurol., 4, 281–288 (2005), https://doi.org/10.1016/S1474-4422(05)70071-5.

    PubMed  Google Scholar 

  9. 9.

    H. Lassmann, W. Bruck, and C. F. Lucchinetti, “The immunopathology of multiple sclerosis: an overview,” Brain Pathol., 17, No. 2, 210–218 (2007), https://doi.org/10.1111/j.1750-3639.2007.00064.x.

    PubMed  Google Scholar 

  10. 10.

    C. H. Polman, S. C. Reingold, B. Banwell, et al., “Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria,” Ann. Neurol., 69, No. 2, 292–302 (2011), https://doi.org/10.1002/ana.22366.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    A. J. Thompson, B. L. Banwell, F. Barkhof, et al., “Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria,” Lancet Neurol., 17, No. 2, 162–173 (2018), https://doi.org/10.1016/S1474-4422(17)30470-2.

    PubMed  Google Scholar 

  12. 12.

    R. Dobson, S. Ramagopalan, A. Davis, and G. Giovannoni, “Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude,” J Neurol. Neurosurg. Psychiatry, 84, No. 8, 909–914 (2013), https://doi.org/10.1136/jnnp-2012-304695.

    PubMed  Google Scholar 

  13. 13.

    A. Petzold, “Intrathecal oligoclonal IgG synthesis in multiple sclerosis,” J. Neuroimmunol., 262, No. 1–2, 1–10 (2013), https://doi.org/10.1016/j.jneuroim.2013.06.014.

    CAS  PubMed  Google Scholar 

  14. 14.

    I. Nakashima, K. Fujihara, S. Sato, and Y. Itoyama, “Oligoclonal IgG bands in Japanese patients with multiple sclerosis. A comparative study between isoelectric focusing with IgG immunofi xation and high-resolution agarose gel electrophoresis,” J. Neuroimmunol., 159, 133–136 (2005), https://doi.org/10.1016/j.jneuroim.2004.09.011.

    CAS  PubMed  Google Scholar 

  15. 15.

    A. S. Fortini, E. L. Sanders, B. G. Weinshenker, and J. A. Katzmann, “Cerebrospinal fluid oligoclonal band in the diagnosis of multiple sclerosis,” Am. J. Clin. Pathol., 120, 672–675 (2003), https://doi.org/10.1309/EM7K-CQR4-GLMH-RCX4.

    CAS  PubMed  Google Scholar 

  16. 16.

    H. Link and Y.-M. Huang, “Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness,” J. Neuroimmunol., 180, 17–28 (2006), https://doi.org/10.1016/j.jneuroim.2006.07.006.

    CAS  PubMed  Google Scholar 

  17. 17.

    R. Tomioka and M. Matsui, “Biomarkers for multiple sclerosis,” Internal Medicine, 53, 361–365 (2014), https://doi.org/10.2169/internalmedicine.53.1246.

    PubMed  Google Scholar 

  18. 18.

    M. Thangarajh, J. Gomez-Rial, A. K. Hedström, et al., “Lipidspecific immunoglobulin M in CSF predicts adverse long-term out-come in multiple sclerosis,” Mult. Scler., 14, No. 9, 1208–1213 (2008), https://doi.org/10.1177/1352458508095729.

    CAS  PubMed  Google Scholar 

  19. 19.

    L. M. Villar, M. C. Sádaba, E. Roldán, et al., “Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS,” J. Clin. Invest., 115, No. 1, 187–194 (2005), https://doi.org/10.1172/JCI200522833.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    J. C. Alvarez-Cermeno, F. J. Munoz-Negrete, L. Costa-Frossard, et al., “Intrathecal lipid-specific oligoclonal IgM synthesis associates with retinal axonal loss in multiple sclerosis,” J. Neurol. Sci., 360, 41–44 (2016), https://doi.org/10.1016/j.jns.2015.11.030.

    CAS  PubMed  Google Scholar 

  21. 21.

    L. M. Villar, C. Picón, L. Costa-Frossard, et al., “Cerebrospinal fluid immunological biomarkers associated with axonal damage in multiple sclerosis,” Eur. J. Neurol., 22, No. 8, 1169–1175 (2015), https://doi.org/10.1111/ene.12579.

    CAS  PubMed  Google Scholar 

  22. 22.

    M. C. Sádaba, J. Tzartos, C. Paino, et al., “Axonal and oligodendrocytelocalized IgM and IgG deposits in MS lesions,” J. Neuroimmunol., 247, No. 1–2, 86–94 (2012), https://10.1016/j.jneuroim.2012.03.020.

    PubMed  Google Scholar 

  23. 23.

    E. Cantó, M. Tintoré, L. M. Villar, et al., “Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes,” Brain, 138, No. 4, 918–931 (2015), https://doi.org10.1093/brain/awv017.

  24. 24.

    M. Kanneganti, A. Kamba, and E. Mizoguchi, “Role of chitotriosidase (chitinase 1) under normal and disease conditions,” J. Epithel. Biol. Pharmacol., 5, 1–9 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    G. Hinsinger, N. Galéotti, N. Nabholz, et al., “Chitinase 3-like proteins as diagnostic and prognostic biomarkers of multiple sclerosis,” Mult. Scler., 21, No. 10, 1251–1261 (2015), https://doi.org/10.1177/1352458514561906.

    CAS  PubMed  Google Scholar 

  26. 26.

    C. G. Lee, C. A. Da Silva, C. S. Dela Cruz, et al., “Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury,” Annu. Rev. Physiol., 73, 479–501 (2011), https://doi.org/10.1146/annurev-physiol-012110-142250.

    CAS  PubMed  Google Scholar 

  27. 27.

    D. Bonneh-Barkay, G. Wang, A. Starkey, et al., “In vivo CHI3L1 (YKL-40) expression in astrocytes in acute and chronic neurological diseases,” J. Neuroinflammation, 7, 34 (2010), https://doi.org/10.1186/1742-2094-7-34.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    M. A. Martinez, B. Olsson, L. Bau, et al., “Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis,” Mult. Scler., 21, No. 5, 550–561 (2015), https://doi.org/10.1177/1352458514549397.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    S. Modvig, M. Degn, B. Sander, et al., “Cerebrospinal fluid neurofi lament light chain levels predict visual outcome after optic neuritis,” Mult. Scler., 22, No. 5, 590–598 (2016), https://doi.org/10.1177/1352458515599074.

    CAS  PubMed  Google Scholar 

  30. 30.

    E. Borràs, E. Canto, M. Choi, et al., “Protein-based classifi er to predict conversion from clinically isolated syndrome to multiple sclerosis,” Mol. Cell. Proteomics, 15, No. 1, 318–328 (2016), https://doi.org/10.1074/mcp.M115.053256.

    PubMed  Google Scholar 

  31. 31.

    M. Mollgaard, M. Degn, F. Sellebjerg, et al., “Cerebrospinal fluid chitinase-3-like 2 and chitotriosidase are potential prognostic biomarkers in early multiple sclerosis,” Eur. J. Neurol., 23, No. 5, 898–905 (2016), https://doi.org/10.1111/ene.12960.

    CAS  PubMed  Google Scholar 

  32. 32.

    J. Kuhle, D. Leppert, A. Petzold, et al., “Neurofi lament heavy chain in CSF correlates with relapses and disability in multiple sclerosis,” Neurology, 76, No. 14, 1206–1213 (2011), https://doi.org/10.1212/WNL.0b013e31821432ff.

    CAS  PubMed  Google Scholar 

  33. 33.

    C. E. Teunissen, E. Iacobaeus, M. Khademi, et al., “Combination of CSF N-acetylaspartate and neurofi laments in multiple sclerosis,” Neurology, 72, No. 15, 1322–1329 (2009), https://doi.org/10.1212/WNL.0b013e3181a0fe3f.

    CAS  PubMed  Google Scholar 

  34. 34.

    J. Salzer, A. Svenningsson, and P. Sundstrom, “Neurofi lament light as a prognostic marker in multiple sclerosis,” Mult. Scler., 16, No. 3, 287–292 (2010), https://doi.org/10.1177/1352458509359725.

    CAS  PubMed  Google Scholar 

  35. 35.

    C. Matute-Blanch, L. M. Villar, J. C. Álvarez-Cermeño, et al., “Neurofi lament light chain and oligoclonal bands are prognostic biomarkers in radiologically isolated syndrome,” Brain, 141, No. 4, 1085–1093 (2018), https://doi.org/10.1093/brain/awy021.

    PubMed  Google Scholar 

  36. 36.

    A. Bhan, C. Jacobsen, K. M. Myhr, et al., “Neurofi laments and 10-year follow-up in multiple sclerosis,” Mult. Scler., 24, No. 10, 1301–1307 (2018), https://doi.org/10.1177/1352458518782005.

    PubMed  Google Scholar 

  37. 37.

    L. Cai and J. Huang, “Neurofi lament light chain as a biological marker for multiple sclerosis: a meta-analysis study,” Neuropsychiatr. Dis. Treat., 14, 2241–2254 (2018), https://doi.org/10.2147/NDT.S173280.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    A. Petzold, M. D. Steenwijk, J. M. Eikelenboom, et al., “Elevated CSF neurofi lament proteins predict brain atrophy: a 15-year follow-up study,” Mult. Scler., 22, No. 9, 1154–1162 (2016), https://doi.org/10.1177/1352458516645206.

    CAS  PubMed  Google Scholar 

  39. 39.

    A. Petzold, “The prognostic value of CSF neurofi laments in multiple sclerosis at 15-year follow-up,” J Neurol. Neurosurg. Psychiatry, 86, No. 12, 1388–1390 (2015), https://doi.org/10.1136/jnnp-2014-309827.

    PubMed  Google Scholar 

  40. 40.

    C. M. Jacque, C. Vinner, M. Kujas, et al., “Determination of glial fibrillary acidic protein (GFAP) in human brain tumors,” J. Neurol. Sci., 35, 147–155 (1978), https://doi.org/10.1016/0022-510X(78)90107-7.

    CAS  PubMed  Google Scholar 

  41. 41.

    U. Roessmann, M. E. Velasco, S. D. Sindely, and P. Gambetti, “Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study,” Brain Res., 200, 13–21 (1980), https://doi.org/10.1016/0006-8993(80)91090-2.

    CAS  PubMed  Google Scholar 

  42. 42.

    M. A. Martínez, B. Olsson, L. Bau, et al., “Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis,” Mult. Scler., 21, No. 5, 550–561 (2015); https://doi.org/10.1177/1352458514549397.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    M. Axelsson, C. Malmeström, S. Nilsson, et al., “Glial fi brillary acidic protein: a potential biomarker for progression in multiple sclerosis,” J. Neurol., 258, No. 5, 882–888 (2011), https://doi.org/10.1007/s00415-010-5863-2.

    CAS  PubMed  Google Scholar 

  44. 44.

    Y. K. Semra, O. A. Seidi, and M. K. Sharief, “Heightened intrathecal release of axonal cytoskeletal proteins in multiple sclerosis is associated with progressive disease and clinical disability,” J. Neuroimmunol., 122, No. 1–2, 132–139 (2002), https://doi.org/10.1007/s10072-012-0974-4.

    CAS  PubMed  Google Scholar 

  45. 45.

    R. Madeddu, C. Farace, P. Tolu, et al., “Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis,” Neurol. Sci., 34, No. 2, 181–186 (2013), https://doi.org/10.1007/s10072-012-0974-4.

    PubMed  Google Scholar 

  46. 46.

    J. G. Cyster, “Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs,” Annu. Rev. Immunol., 23, 127–159 (2005), https://doi.org/10.1146/annurev.immunol.23.021704.115628.

    CAS  PubMed  Google Scholar 

  47. 47.

    T. Okada, and J. G. Cyster, “B cell migration and interactions in the early phase of antibody responses,” Curr. Opin. Immunol., 18, 278–285 (2006), https://doi.org/10.1016/j.coi.2006.02.005.

    CAS  PubMed  Google Scholar 

  48. 48.

    M. Khademi, I. Kockum, M. L. Andersson, et al., “Cerebrospinal fluid CXCL13 in multiple sclerosis: A suggestive prognostic marker for the disease course,” Mult. Scler., 17, 335–343 (2011), https://doi.org/10.1177/1352458510389102.

    CAS  PubMed  Google Scholar 

  49. 49.

    J. Brettschneider, A. Czerwoniak, M. Senel, et al., “The chemokine CXCL13 is a prognostic marker in clinically isolated syndrome (CIS),” PLoS One, 5, No. 8, e11986 (2010), https://doi.org/10.1371/journal.pone.0011986.

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    F. Mashayekhi, Z. Salehi, and H. R. Jamalzadeh, “Quantitative analysis of cerebrospinal fluid brain derived neurotrophic factor in the patients with multiple sclerosis,” Acta Medica (Hradec Kralove), 55, No. 2, 83–86 (2012), https://doi.org10.14712/18059694.2015.60.

  51. 51.

    T. Khaibullin, V. Ivanova, E. Martynova, et al., “Elevated levels of proinflammatory cytokines in cerebrospinal fluid of multiple sclerosis patients,” Front. Immunol., 8, 531 (2017), https://doi.org/10.3389/fimmu.2017.00531.

  52. 52.

    J. Losy, P. Iwanowski, E. Kaufman, and M. Wójcicka, “CXCL13 CSF level inversely correlates with duration of disease in primary progressive multiple sclerosis,” J. Med. Sci., 85, No. 4, 298–300 (2016), https://doi.org/10.20883/jms.2016.169.

    Google Scholar 

  53. 53.

    M. Komori, A. Blake, M. Greenwood, et al., “Cerebrospinal fluid markers reveal intrathecal inflammation in progressive multiple sclerosis,” Ann. Neurol., 78, No. 1, 3–20 (2015), https://doi.org/10.1002/ana.24408.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    M. Stilund, A. K. Reuschlein, T. Christensen, et al., “Soluble CD163 as a marker of macrophage activity in newly diagnosed patients with multiple sclerosis,” PLoS One, 9, No. 6, e98588 (2014), https://doi.org/10.1371/journal.pone.0098588.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    A. Ohrfelt, M. Axelsson, C. Malmeström, et al., “Soluble TREM-2 in cerebrospinal fluid from patients with multiple sclerosis treated with natalizumab or mitoxantrone,” Mult. Scler., 22, No. 12, 1587–1595 (2016), https://doi.org/10.1177/1352458515624558.

    PubMed  Google Scholar 

  56. 56.

    G. Hassan-Smith, L. Durant, A. Tsentemeidou, et al., “High sensitivity and specificity of elevated cerebrospinal fluid kappa free light chains in suspected multiple sclerosis,” J. Neuroimmunol., 276, No. 1–2, 175–1759 (2014), https://doi.org/10.1016/j.jneuroim.2014.08.003.

    CAS  PubMed  Google Scholar 

  57. 57.

    L. M. Villar, M. Espiño, L. Costa-Frossard, et al., “High levels of cerebrospinal fluid free kappa chains predict conversion to multiple sclerosis,” Clin. Chim. Acta, 413, No. 23–24, 1813–1816 (2012), https://doi.org/10.1016/j.cca.2012.07.007.

    CAS  PubMed  Google Scholar 

  58. 58.

    P. Menéndez-Valladares, M. I. García-Sánchez, M. Adorna Martínez, et al., “Validation and meta-analysis of kappa index biomarker in multiple sclerosis diagnosis,” Autoimmun. Rev. (2018); pii:1568-9972(18)30259-3, https://doi.org/10.1016/j.autrev.2018.07.010.

  59. 59.

    M. Christiansen, M. C. Gjelstrup, M. Stilund, et al., “Cerebrospinal fluid free kappa light chains and kappa index perform equal to oligoclonal bands in the diagnosis of multiple sclerosis,” Clin. Chem. Lab. Med. (2018); pii:/j/cclm.ahead-of-print/cclm-2018-0400/cclm-2018-0400.xml, https://doi.org/10.1515/cclm-2018-0400.

  60. 60.

    G. F. Weber, S. Zawaideh, S. Hikita, et al., “Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation,” J. Leukoc. Biol., 72, 752–761 (2002), https://doi.org/10.1189/jlb.72.4.752.

    CAS  PubMed  Google Scholar 

  61. 61.

    L. Börnsen, M. Khademi, T. Olsson, et al., “Osteopontin concentrations are increased in cerebrospinal fluid during attacks of multiple sclerosis,” Mult. Scler., 17, No. 1, 32–42 (2010), https://doi.org/10.1177/1352458510382247.

    PubMed  Google Scholar 

  62. 62.

    L. Szalardy, D. Zadori, M. Simu, et al., “Evaluating biomarkers of neuronal degeneration and neuroinflammation in CSF of patients with multiple sclerosis–osteopontin as a potential marker of clinical severity,” J. Neurol. Sci., 331, No. 1–2, 38–42 (2013), https://doi.org/10.1016/j.jns.2013.04.024.

    CAS  PubMed  Google Scholar 

  63. 63.

    S.-R. Wen, G.-J. Liu, R.-N. Feng, et al., “Increased levels of IL-23 and osteopontin in serum and cerebrospinal fluid of multiple sclerosis patients,” J. Neuroimmunol., 244, No. 1–2, 94–96 (2012), https://doi.org/10.1016/j.jneuroim.2011.12.004.

    CAS  PubMed  Google Scholar 

  64. 64.

    A. Paul, M. Comabella, and R. Gandhi, “Biomarkers in multiple sclerosis,” Cold Spring Harb. Perspect. Med. a029058 (2018), https://doi.org/10.1101/cshperspect.a029058.

  65. 65.

    R. Egg, M. Reindl, F. Deisenhammer, et al., “Anti-MOG and anti-MBP antibody subclasses in multiple sclerosis,” Mult. Scler., 7, No. 5, 285–289 (2001), https://doi.org/10.1177/135245850100700503.

    CAS  PubMed  Google Scholar 

  66. 66.

    B. Olsson, C. Malmeström, H. Basun, et al., “Extreme stability of chitotriosidase in cerebrospinal fluid makes it a suitable marker for microglial activation in clinical trials,” J. Alzheimers Dis., 32, No. 2, 273–276 (2012), https://doi.org/10.3233/JAD-2012-120931.

    CAS  PubMed  Google Scholar 

  67. 67.

    C. Malmeström, M. Axelsson, J. Lycke, et al., “CSF levels of YKL-40 are increased in MS and decrease with immunosuppressive treatment,” J. Neuroimmunol., 269, No. 1–2, 87–89 (2014), https://doi.org/10.1016/j.jneuroim.2014.02.004.

    PubMed  Google Scholar 

  68. 68.

    M. P. Stoop, V. Singh, C. Stingl, et al., “Effects of natalizumab treatment on the cerebrospinal fluid proteome of multiple sclerosis patients,” J. Proteome Res., 12, No. 3, 1101–1107 (2013), https://doi.org/10.1021/pr3012107.

    CAS  PubMed  Google Scholar 

  69. 69.

    J. Ottervald, B. Franzén, K. Nilsson, et al., “Multiple sclerosis: Identification and clinical evaluation of novel CSF biomarkers,” J. Proteomics, 73, No. 6, 1117–1132 (2010), https://doi.org/10.1016/j.jprot.2010.01.004.

    CAS  PubMed  Google Scholar 

  70. 70.

    V. K. Harris, N. Donelan, Q. J. Yan, et al., “Cerebrospinal fluid fetuin-A is a biomarker of active multiple sclerosis,” Mult. Scler., 19, No. 11, 1462–1472 (2013), https://doi.org/10.1177/1352458513477923.

    PubMed  Google Scholar 

  71. 71.

    M. Gunnarsson, C. Malmeström, M. Axelsson, et al., “Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab,” Ann. Neurol., 69, No. 1, 83–89 (2011), https://doi.org/10.1002/ana.22247.

    CAS  PubMed  Google Scholar 

  72. 72.

    L. Novakova, M. Axelsson, M. Khademi, et al., “Cerebrospinal fluid biomarkers of inflammation and degeneration as measures of fi ngolimod efficacy in multiple sclerosis,” Mult. Scler., 23, No. 1, 62–71 (2017), https://doi.org/10.1177/1352458516639384.

    CAS  PubMed  Google Scholar 

  73. 73.

    L. Piccio, R. T. Naismith, K. Trinkaus, et al., “Changes in B- and T-lymphocyte and chemokine levels with rituximab treatment in multiple sclerosis,” Arch. Neurol., 67, No. 6, 707–714 (2010), https://doi.org/10.1001/archneurol.2010.99.

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    A. H. Cross, R. S. Klein, and L. Piccio, “Rituximab combination therapy in relapsing multiple sclerosis,” Ther. Adv. Neurol. Disord., 5, No. 6, 311–319 (2012), https://doi.org/10.1177/1756285612461165.

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    M. Axelsson, C. Malmeström, M. Gunnarsson, et al., Immunosuppressive therapy reduces axonal damage in progressive multiple sclerosis,” Mult. Scler., 20, No. 1, 43–50 (2014), https://doi.org/10.1177/1352458513490544.

    CAS  PubMed  Google Scholar 

  76. 76.

    A. Petzold, M. J. Eikelenboom, D. Gveric, et al., “Markers for different glial cell responses in multiple sclerosis: Clinical and pathological correlations,” Brain, 125, 1462–1473 (2002), https://doi.org/10.1093/brain/awf165.

    CAS  PubMed  Google Scholar 

  77. 77.

    J. L. Kanter, S. Narayana, P. P. Ho, et al., “Functional inflammatory profi les distinguish myelin-reactive T cells from patients with multiple sclerosis,” Nat. Med., 12, 138–143 (2006), https://doi.org/10.1126.scitranslmed.aaa8038.

    CAS  PubMed  Google Scholar 

  78. 78.

    H. Garren, W. H. Robinson, E. Krasulová, et al., BHT-3009 Study Group, “Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis,” Ann. Neurol., 63, 611–620 (2008), https://doi.org/10.1002/ana.21370.

  79. 79.

    F. J. Quintana, M. F. Farez, V. Viglietta, et al., “Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis, Proc. Natl. Acad. Sci. USA, 105, No. 48, 18889–18894 (2008), https://doi.org/10.1073/pnas.0806310105.

    CAS  PubMed  Google Scholar 

  80. 80.

    M. Hecker, B. Fitzner, M. Wendt, et al., “High-density peptide microarray analysis of IgG autoantibody reactivities in serum and cerebrospinal fluid of multiple sclerosis patients,” Mol. Cell. Proteomics, 15, No. 4, 1360–1380 (2016), https://doi.org/10.1074/mcp.M115.051664.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. D. Shedko.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 119, No. 7, Iss. 1, pp. 95–102, July, 2019

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shedko, E.D., Tyumentseva, M.A. Molecular Biomarkers in the Cerebrospinal Fluid in Multiple Sclerosis. Neurosci Behav Physi 50, 527–533 (2020). https://doi.org/10.1007/s11055-020-00932-z

Download citation

Keywords

  • autoimmune diseases
  • multiple sclerosis
  • biomarkers
  • cerebrospinal fluid