Kinematics of Locomotor Movements in Rats in 7-Day Unweighting

The aim of the present work was to study the dynamics of changes in the sensorimotor control of gait in conditions of unweighting of the hindlimbs. Experiments were performed on rats in which the kinematics of locomotor movements were evaluated before, during, and after keeping the hindlimbs in the Morey-Holton antiorthostatic position. Locomotion on the treadmill after unweighting showed increases in extension at the ankle and knee joints. Analysis of the dynamics of changes in the kinematic parameters of locomotor movements in the unsupported position revealed progressive increases in extension of the knee and ankle joints, though there was a decrease in extension at the hip joint during the seven days of unweighting. This corresponded to the forced position of the hindlimbs on passive hanging, which was characterized by hyperextension of the knee and ankle joints, though with hyperflexion of the hips. These data lead to the conclusion that stable dynamics of changes in gait kinematics characterizing the operation of spinal neural networks in the central locomotor generator responsible for forming the motor pattern can be produced by progressive reorganization of the system of proprioceptive connections in conditions of the altered configuration of body posture and limb joints during unweighting.

This is a preview of subscription content, log in to check access.


  1. 1.

    V. E. Novikov and E. A. Ilyin, “Age-related reactions of rat bones to their unloading,” Aviat. Space Environ. Med., 52, No. 9, 551–553 (1981).

    CAS  PubMed  Google Scholar 

  2. 2.

    E. R. Morey-Holton and R. K. Globus, “Hindlimb unloading rodent model: technical aspects,” J. Appl. Physiol., 92, No. 4, 1367–1377 (1985).

    Article  Google Scholar 

  3. 3.

    E. K. Alford, R. R. Roy, J. A. Hodgson, and V. R. Edgerton, “Electromyography of rat soleus, medial gastrocnemius, and tibialis anterior during hindlimb suspension,” Exp. Neurol., 96, No. 3, 635–649 (1987).

    CAS  Article  Google Scholar 

  4. 4.

    A. Ishihara, F. Kawano, N. Ishioka, et al., “Effects of running exercise during recovery from hindlimb unloading on soleus muscle fibers and their spinal motoneurons in rats,” Neurosci. Res., 48, No. 2, 119–127 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    M. H. Canu and M. Falempin, “Effect of hindlimb unloading on two hindlimb muscles during treadmill locomotion in rats,” Eur. J. Appl. Physiol. Occup. Physiol., 75, No. 4, 283–288 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    N. Fujita, T. Fujimoto, H. Tasaki, et al., “Infl uence of muscle length on muscle atrophy in the mouse tibialis anterior and soleus muscles,” Biomed. Res., 30, No. 1, 39–45 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    A. M. Winiarski, R. R. “Roy, E. K. Alford, et al., “Mechanical properties of rat skeletal muscle after hindlimb suspension,” Exp. Neurol., 96, No. 3, 650–660 (1987).

  8. 8.

    D. A. Riley, G. R. Slocum, J. L. Bain, et al., “Rat hindlimb unloading: soleus histochemistry, ultrastructure, and electromyography,” J. Appl. Physiol., 69, No. 1, 58–66 (1990).

    CAS  Article  Google Scholar 

  9. 9.

    A. I. Grigor’ev, I. B. Kozlovskaya, and B. S. Shenkman, “The role of support afferentation in the organization of the tonic muscular system,” Ros. Fiziol. Zh., 90, No. 5, 508–521 (2004).

    Google Scholar 

  10. 10.

    B. S. Shenkman, “From slow to fast: Hypogravity-induced remodeling of muscle fiber myosin phenotype,” Acta Naturae, 4, No. 31, 47–59 (2016).

  11. 11.

    F. Kawano, A. Ishihara, J. L. Stevens, et al., “Tension- and afferent input-associated responses of neuromuscular system of rats to hindlimb unloading and/or tenotomy,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 287, No. 1, R76–R86 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    Y. Ohira, T. Nomura, F. Kawano, et al., “Effects of nine weeks of unloading on neuromuscular activities in adult rats,” J. Gravit. Physiol., 9, No. 2, 49–59 (2002).

    PubMed  Google Scholar 

  13. 13.

    J. Tajino, A. Ito, M. Nagai, et al., “Discordance in recovery between altered locomotion and muscle atrophy induced by simulated microgravity in rats,” J. Mot. Behav., 47, No. 5, 397–406 (2015).

    Article  Google Scholar 

  14. 14.

    M. H. Canu and M. Falempin, “Effect of hindlimb unloading on locomotor strategy during treadmill locomotion in the rat,” Eur. J. Appl. Physiol. Occup. Physiol., 74, No. 4, 297–304 (1996).

    CAS  Article  Google Scholar 

  15. 15.

    M. H. Canu, C. Garnier, F. X. Lepoutre, and M. Falempin, “A 3D analysis of hindlimb motion during treadmill locomotion in rats after a 14-day episode of simulated microgravity,” Behav. Brain Res., 157, No. 2, 309–321 (2005).

    Article  Google Scholar 

  16. 16.

    J. Duysens and K. G. Pearson, “From cat to man: basic aspects of locomotion relevant to motor rehabilitation of SCI,” Neurorehabilitation, 10, No. 2, 107–118 (1998).

  17. 17.

    S. Grillner and S. Rossignol, “On the initiation of the swing phase of locomotion in chronic spinal cats,” Brain Res., 146, No. 2, 269–277 (1978).

    CAS  Article  Google Scholar 

  18. 18.

    D. A. McCrea, and I. A. Rybak, “Organization of mammalian locomotor rhythm and pattern generation,” Brain Res. Rev., 57, 134–146 (2008).

    Article  Google Scholar 

  19. 19.

    M. Knikoua and W. Rymera, “Hip angle induced modulation of H reflex amplitude, latency and duration in spinal cord injured humans,” Clin. Neurophysiol., 113, 1698–1708 (2002).

    Article  Google Scholar 

  20. 20.

    A. Kamiya, S. Tanabe, Y. Muraoka, and Y. Masakado, “Modulation of the soleus H-reflex during static and dynamic imposed hip angle changes,” Int. J. Neurosci., 116, No. 9, 1045–1053 (2006).

    Article  Google Scholar 

  21. 21.

    X. J. Musacchia and S. Fagette, “Weightlessness simulations for cardiovascular and muscle systems: validity of rat models,” J. Gravit. Physiol., 4, No. 3, 49–59 (1997).

    CAS  PubMed  Google Scholar 

  22. 22.

    M. L. Shik, “Control of terrestrial locomotion of mammals,” in: Physiology of Motion, Nauka, Leningrad (1976), pp. 234–275.

  23. 23.

    E. Aarts, M. Verhage, J. V. Veenvliet, et al., “A solution to dependency: using multilevel analysis to accommodate nested data,” Nat. Neurosci., 17, 491–496 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    S. Rossignol, “Neuronal control of stereotypic limb movements,” in: Handbook of Physiology, L. B. Rowell and J. T. Sheperd (eds.), Oxford Univ. Press, New York (1996), pp. 174–216.

    Google Scholar 

  25. 25.

    A. Berthoz, “Reference frames for the perception and control of movement,” in: Brain and Space, J. Paillard (ed.), Oxford Univ. Press, Oxford (1991), pp. 81–111.

    Google Scholar 

  26. 26.

    C. B. Webb and T. C. Cope, “Modulation of Ia EPSP amplitude: the effects of chronic synaptic inactivity,” J. Neurosci., 12, No. 1, 338– 344 (1992).

    CAS  Article  Google Scholar 

  27. 27.

    B. L. Huckstorf, G. R. Slocum, J. L. Bain, et al., “Effects of hindlimb unloading on neuromuscular development of neonatal rats,” Brain Res. Dev. Brain Res., 119, No. 2, 169–178 (2000).

    CAS  Article  Google Scholar 

  28. 28.

    M. Falempin and S. Albon, “Influence of brief daily tendon vibration on rat soleus muscle in nonweightbearing situation,” J. Appl. Physiol., 87, No. 1, 3–9 (1999).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. A. Popov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 105, No. 4, pp. 447–455, April, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popov, A.A., Lyakhovetskii, V.A., Merkulyeva, N.S. et al. Kinematics of Locomotor Movements in Rats in 7-Day Unweighting. Neurosci Behav Physi 50, 500–504 (2020).

Download citation


  • locomotion
  • kinematics
  • unweighting
  • rat
  • central pattern generator