Advertisement

Neuroscience and Behavioral Physiology

, Volume 49, Issue 7, pp 903–909 | Cite as

Progress in Sleep Studies in the Epoch of Electrophysiology. The Visceral Theory of Sleep

  • I. N. PigarevEmail author
  • M. L. Pigareva
Article
  • 15 Downloads

Electrophysiological methods of studying the nervous system have opened up new opportunities in sleep research. The spike frequencies of neurons in the cerebral cortex during sleep not only do not decrease but can significantly exceed their mean activity level during waking. One hypothesis explaining the high activity of cortical neurons when sensory perception thresholds are elevated and conduction of signals from the external world and the body to the cerebral cortex is virtually blocked is the visceral theory of sleep, which suggests that during sleep the cerebral cortex starts to receive interoceptive afferentation from all the body’s visceral systems for analysis. This article reviews studies addressing the direct experimental verification of this theory.

Keywords

sleep visceral systems electrophysiology visceral theory of sleep purpose of sleep 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. N. Pigarev and M. L. Pigareva, “The long and laborious path to understanding the value of sleep. Before the appearance of electrophysiology,” Zh. Nevrol. Psikhiat., 4, No. 2, 91–97 (2017).CrossRefGoogle Scholar
  2. 2.
    V. M. Koval’zon, Basic Somnology. Physiology and Neurochemistry of the Sleep–Waking Cycle, Binom Knowledge Laboratory, Moscow (2011).Google Scholar
  3. 3.
    H. Berger, “Über das Electrenkephalogramm des Menschen,” Archiv für Psychiatrie und Nervenkrankheiten, 87, No. 6, 527–570 (1929).CrossRefGoogle Scholar
  4. 4.
    A. L. Loomis, E. N. Harvey, and G. Hobart, “Further observations on the potential rhythms of the cerebral cortex during sleep,” Science, 82, No. 2122, 198–200 (1935).CrossRefPubMedGoogle Scholar
  5. 5.
    A. L. Loomis, E. N. Harvey, and G. A. Hobart, “Cerebral states during sleep as studied by human brain potentials,” J. Exp. Biol., 21, 127–144 (1937).Google Scholar
  6. 6.
    R. Klaue, “Die bioelektrische Tatigkeit der Groshirnrinde im normalen Schlaf und in der Narkose durch Schlafmittel,” J. Psychol. Neurol. 47, No. 5, 510–531 (1937).Google Scholar
  7. 7.
    K. Aserinsky and N. Kleitman, “Regularly occurring periods of eye motility, and concomitant phenomena, during sleep,” Science, 118, No. 3062, 273–274 (1953).CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    S. Datta and R. R. Maclean, “Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence,” Neurosci. Biobehav. Rev., 31, No. 5, 775–824 (2007),  https://doi.org/10.1016/j.neubiorev.2007.02.004.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    B. E. Jones, “Basic mechanisms of sleep-wake states,” in: Principles and Practice of Sleep Medicine, M. H. Kryger et al., (eds.), Elsevier, Amsterdam (2005).Google Scholar
  10. 10.
    A. Adamantidis and L. de Lecea, “Physiological arousal: a role for hypothalamic systems,” Cell. Mol. Life Sci., 65, No. 10, 1475–1488 (2008),  https://doi.org/10.1007/s00018-008-7521-8.CrossRefPubMedGoogle Scholar
  11. 11.
    L. M. Mukhametov and G. Rizzolatti, “The responses of lateral geniculate neurons to flashes of light during the sleep–waking cycle,” Arch. Ital. Biol., 108, No. 2, 325–347 (1970).PubMedGoogle Scholar
  12. 12.
    A. Rechtschaffen and B. M. Bergmann, “Sleep deprivation in the rat: An update of the 1989 paper,” Sleep, 25, No. 1, 18–24 (2002).CrossRefPubMedGoogle Scholar
  13. 13.
    C. Cirelli, P. J. Shaw, A. Rechtschaffen, and G. Tononi, “No evidence of brain cell degeneration after long-term sleep deprivation in rats,” Brain Res., 840, No. 1–2, 184–193 (1999),  https://doi.org/10.1016/S0006-8993(99)01768-0.CrossRefPubMedGoogle Scholar
  14. 14.
    I. N. Pigarev, “Neurons of visual cortex respond to visceral stimulation during slow wave sleep,” Neuroscience, 62, No. 4, 1237–1243 (1994).CrossRefPubMedGoogle Scholar
  15. 15.
    I. N. Pigarev, H. Almirall, M. L. Pigareva, et al., “Visceral signals reach visual cortex during slow wave sleep. Study in monkeys,” Acta Neurobiol. Exp. (Wars.), 66, No. 1, 69–73 (2006).Google Scholar
  16. 16.
    I. N. Pigarev, H. Almirall, J. Marimon, and M. L. Pigareva, “Dynamic pattern of the viscero-cortical projections during sleep. Study in New Zealand rabbits,” J. Sleep Res., 13, No. Suppl. 1, 574 (2004).Google Scholar
  17. 17.
    I. N. Pigarev, H. Almirall, and M. L. Pigareva, “Cortical evoked responses to magnetic stimulation of macaque’s abdominal wall in sleep–wake cycle,” Acta Neurobiol. Exp. (Wars.), 68, No. 1, 91–96 (2008).Google Scholar
  18. 18.
    I. N. Pigarev, G. O. Fedorov, E. V. Levichkina, et al., “Visually triggered K-complexes: a study in New Zealand rabbits,” Exp. Brain Res., 210, No. 1, 131–142 (2011),  https://doi.org/10.1007/s00221-011-2606-2.CrossRefPubMedGoogle Scholar
  19. 19.
    I. N. Pigarev, V. A. Bagaev, E. V. Levichkina, et al., “Cortical visual areas process intestinal information during slow-wave sleep,” Neurogastroenterol. Motil., 25, 268–275 (2013),  https://doi.org/10.1111/nmo.12052.CrossRefPubMedGoogle Scholar
  20. 20.
    I. N. Pigarev, N. G. Bibikov, and I. I. Busygina, “Changes in the intragastric medium during sleep influence the statistical characteristics of neuron activity in the cerebral cortex,” Ros. Fiziol. Zh., 100, No. 6, 722–735 (2014).Google Scholar
  21. 21.
    N. G. Bibikov and I. N. Pigarev, “Interaction of activity in local neurons in the cat cerebral cortex in slow-wave sleep,” Ros. Fiziol. Zh., 104, No. 1, 53–67 (2018).Google Scholar
  22. 22.
    I. N. Pigarev and M. L. Pigareva, “The state of sleep and the current brain paradigm,” Front. Syst. Neurosci., 9, 139–143 (2015),  https://doi.org/10.3389/fnsys.2015.00139.
  23. 23.
    I. I. Busygina, V. G. Aleksandrov, O. A. Lyubashina, and S. S. Panteleev, “Effect of stimulation of the insular cortex on execution of the antrofundal reflex in conscious dogs,” Ros. Fiziol. Zh., 95, No. 2, 153–160 (2009); Neurosci. Behav. Physiol., 40, No. 4, 375–380 (2010).Google Scholar
  24. 24.
    V. N. Chernigovskii, Interoceptors, Medgiz, Moscow (1960).Google Scholar
  25. 25.
    I. N. Pigarev and N. L. Pigareva, “Sleep, emotions, and visceral control,” Fiziol. Cheloveka, 39, No. 6, 1–14 (2013).Google Scholar
  26. 26.
    I. N. Pigarev, “The visceral theory of sleep,” Zh. Vyssh. Nerv. Deyat., 63, No. 1, 86–104 (2013).Google Scholar
  27. 27.
    I. N. Pigarev and M. L. Pigareva, “Asynchronous development of sleep as the likely cause of decreases in cognitive functions and the occurrence of a number of pathological states linked with the ‘sleep–waking’ cycle. Effective pharmacotherapy,” Nevrol. Psikhiatr., Spec. Iss., Sleep and Sleep Disorders, 22, 6–14 (2014).Google Scholar
  28. 28.
    S. Diekelmann, “Sleep for cognitive enhancement,” Front. Syst. Neurosci., 8, 46 (2014),  https://doi.org/10.3389/fnsys.2014.00046.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kharkevich Institute of Information Transmission ProblemsRussian Academy of Sciences (IITP RAS)MoscowRussia
  2. 2.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations