Skip to main content
Log in

Progress in Sleep Studies in the Epoch of Electrophysiology. The Visceral Theory of Sleep

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Electrophysiological methods of studying the nervous system have opened up new opportunities in sleep research. The spike frequencies of neurons in the cerebral cortex during sleep not only do not decrease but can significantly exceed their mean activity level during waking. One hypothesis explaining the high activity of cortical neurons when sensory perception thresholds are elevated and conduction of signals from the external world and the body to the cerebral cortex is virtually blocked is the visceral theory of sleep, which suggests that during sleep the cerebral cortex starts to receive interoceptive afferentation from all the body’s visceral systems for analysis. This article reviews studies addressing the direct experimental verification of this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. N. Pigarev and M. L. Pigareva, “The long and laborious path to understanding the value of sleep. Before the appearance of electrophysiology,” Zh. Nevrol. Psikhiat., 4, No. 2, 91–97 (2017).

    Article  Google Scholar 

  2. V. M. Koval’zon, Basic Somnology. Physiology and Neurochemistry of the Sleep–Waking Cycle, Binom Knowledge Laboratory, Moscow (2011).

  3. H. Berger, “Über das Electrenkephalogramm des Menschen,” Archiv für Psychiatrie und Nervenkrankheiten, 87, No. 6, 527–570 (1929).

    Article  Google Scholar 

  4. A. L. Loomis, E. N. Harvey, and G. Hobart, “Further observations on the potential rhythms of the cerebral cortex during sleep,” Science, 82, No. 2122, 198–200 (1935).

    Article  CAS  PubMed  Google Scholar 

  5. A. L. Loomis, E. N. Harvey, and G. A. Hobart, “Cerebral states during sleep as studied by human brain potentials,” J. Exp. Biol., 21, 127–144 (1937).

    Google Scholar 

  6. R. Klaue, “Die bioelektrische Tatigkeit der Groshirnrinde im normalen Schlaf und in der Narkose durch Schlafmittel,” J. Psychol. Neurol. 47, No. 5, 510–531 (1937).

    Google Scholar 

  7. K. Aserinsky and N. Kleitman, “Regularly occurring periods of eye motility, and concomitant phenomena, during sleep,” Science, 118, No. 3062, 273–274 (1953).

    Article  CAS  PubMed  Google Scholar 

  8. S. Datta and R. R. Maclean, “Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence,” Neurosci. Biobehav. Rev., 31, No. 5, 775–824 (2007), https://doi.org/10.1016/j.neubiorev.2007.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. B. E. Jones, “Basic mechanisms of sleep-wake states,” in: Principles and Practice of Sleep Medicine, M. H. Kryger et al., (eds.), Elsevier, Amsterdam (2005).

  10. A. Adamantidis and L. de Lecea, “Physiological arousal: a role for hypothalamic systems,” Cell. Mol. Life Sci., 65, No. 10, 1475–1488 (2008), https://doi.org/10.1007/s00018-008-7521-8.

    Article  CAS  PubMed  Google Scholar 

  11. L. M. Mukhametov and G. Rizzolatti, “The responses of lateral geniculate neurons to flashes of light during the sleep–waking cycle,” Arch. Ital. Biol., 108, No. 2, 325–347 (1970).

    CAS  PubMed  Google Scholar 

  12. A. Rechtschaffen and B. M. Bergmann, “Sleep deprivation in the rat: An update of the 1989 paper,” Sleep, 25, No. 1, 18–24 (2002).

    Article  PubMed  Google Scholar 

  13. C. Cirelli, P. J. Shaw, A. Rechtschaffen, and G. Tononi, “No evidence of brain cell degeneration after long-term sleep deprivation in rats,” Brain Res., 840, No. 1–2, 184–193 (1999), https://doi.org/10.1016/S0006-8993(99)01768-0.

    Article  CAS  PubMed  Google Scholar 

  14. I. N. Pigarev, “Neurons of visual cortex respond to visceral stimulation during slow wave sleep,” Neuroscience, 62, No. 4, 1237–1243 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. I. N. Pigarev, H. Almirall, M. L. Pigareva, et al., “Visceral signals reach visual cortex during slow wave sleep. Study in monkeys,” Acta Neurobiol. Exp. (Wars.), 66, No. 1, 69–73 (2006).

    Google Scholar 

  16. I. N. Pigarev, H. Almirall, J. Marimon, and M. L. Pigareva, “Dynamic pattern of the viscero-cortical projections during sleep. Study in New Zealand rabbits,” J. Sleep Res., 13, No. Suppl. 1, 574 (2004).

  17. I. N. Pigarev, H. Almirall, and M. L. Pigareva, “Cortical evoked responses to magnetic stimulation of macaque’s abdominal wall in sleep–wake cycle,” Acta Neurobiol. Exp. (Wars.), 68, No. 1, 91–96 (2008).

    Google Scholar 

  18. I. N. Pigarev, G. O. Fedorov, E. V. Levichkina, et al., “Visually triggered K-complexes: a study in New Zealand rabbits,” Exp. Brain Res., 210, No. 1, 131–142 (2011), https://doi.org/10.1007/s00221-011-2606-2.

    Article  CAS  PubMed  Google Scholar 

  19. I. N. Pigarev, V. A. Bagaev, E. V. Levichkina, et al., “Cortical visual areas process intestinal information during slow-wave sleep,” Neurogastroenterol. Motil., 25, 268–275 (2013), https://doi.org/10.1111/nmo.12052.

    Article  CAS  PubMed  Google Scholar 

  20. I. N. Pigarev, N. G. Bibikov, and I. I. Busygina, “Changes in the intragastric medium during sleep influence the statistical characteristics of neuron activity in the cerebral cortex,” Ros. Fiziol. Zh., 100, No. 6, 722–735 (2014).

    CAS  Google Scholar 

  21. N. G. Bibikov and I. N. Pigarev, “Interaction of activity in local neurons in the cat cerebral cortex in slow-wave sleep,” Ros. Fiziol. Zh., 104, No. 1, 53–67 (2018).

    Google Scholar 

  22. I. N. Pigarev and M. L. Pigareva, “The state of sleep and the current brain paradigm,” Front. Syst. Neurosci., 9, 139–143 (2015), https://doi.org/10.3389/fnsys.2015.00139.

  23. I. I. Busygina, V. G. Aleksandrov, O. A. Lyubashina, and S. S. Panteleev, “Effect of stimulation of the insular cortex on execution of the antrofundal reflex in conscious dogs,” Ros. Fiziol. Zh., 95, No. 2, 153–160 (2009); Neurosci. Behav. Physiol., 40, No. 4, 375–380 (2010).

  24. V. N. Chernigovskii, Interoceptors, Medgiz, Moscow (1960).

  25. I. N. Pigarev and N. L. Pigareva, “Sleep, emotions, and visceral control,” Fiziol. Cheloveka, 39, No. 6, 1–14 (2013).

    Google Scholar 

  26. I. N. Pigarev, “The visceral theory of sleep,” Zh. Vyssh. Nerv. Deyat., 63, No. 1, 86–104 (2013).

    CAS  Google Scholar 

  27. I. N. Pigarev and M. L. Pigareva, “Asynchronous development of sleep as the likely cause of decreases in cognitive functions and the occurrence of a number of pathological states linked with the ‘sleep–waking’ cycle. Effective pharmacotherapy,” Nevrol. Psikhiatr., Spec. Iss., Sleep and Sleep Disorders, 22, 6–14 (2014).

  28. S. Diekelmann, “Sleep for cognitive enhancement,” Front. Syst. Neurosci., 8, 46 (2014), https://doi.org/10.3389/fnsys.2014.00046.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Pigarev.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 118, No. 4, Iss. II, Sleep Disorder, pp. 5–13, April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pigarev, I.N., Pigareva, M.L. Progress in Sleep Studies in the Epoch of Electrophysiology. The Visceral Theory of Sleep. Neurosci Behav Physi 49, 903–909 (2019). https://doi.org/10.1007/s11055-019-00817-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00817-w

Keywords

Navigation