Neuroscience and Behavioral Physiology

, Volume 49, Issue 7, pp 822–831 | Cite as

Intercorrelation of the Activity of Close-Lying Neurons in the Cat Cerebral Cortex During Slow-Wave Sleep

  • N. G. Bibikov
  • I. M. PigarevEmail author

Cross-correlation analysis of baseline spike activity was performed for 184 pairs of close-lying neurons in the car cortex in the state of slow-wave sleep. Recordings were made in the associative zones of the visual-somatosensory cortex. The activity of individual elements was extracted using the program Spike-2. About half of cases showed no significant coupling. Among 93 pairs showing cross-correlation, 66 were characterized by wide (80–800 msec) peaks in the correlation function centered close to zero delay. Sixteen of these pairs showed not only wide peaks, but also narrow peaks (<50 msec), also centered around the zero point. Fourteen pairs displayed only a narrow peak. The remaining 13 pairs showed either inversion of cross-correlation and/or sharp displacement of the position of the correlation function peak. Crosscorrelations were seen with high probability in pairs of cells showing volley-type baseline activity. correlation of individual neurons in the state of slow-wave sleep was not significantly different from that described previously in the state of waking.


cortex cat sleep interneuronal correlation baseline neuron activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. G. Bibikov and I. N. Pigarev, “Background activity of individual neurons in the cortex of sleeping cats,” Ros. Fiziol. Zh., 99, No. 3, 348–362 (2013).Google Scholar
  2. 2.
    A. V. Bogdanov and A. G. Galashina, “Analysis of coupled spike activity of pairs of neurons in microstructures of the cerebral cortex,” Ros. Fiziol. Zh., 86, 497–506 (2000).Google Scholar
  3. 3.
    U. G. Gasanov and A. G. Galashina, “Analysis of interneuronal connections in the auditory cortex of conscious cats,” Zh. Vyssh. Nerv. Deyat., 25, No. 5, 1053–1060 (1975).Google Scholar
  4. 4.
    E. E. Dolbakyan and G. Kh. Merzhanova, “Organization of neural networks in the neocortex,” Zh. Vyssh. Nerv. Deyat., 52, 456–466 (2002).Google Scholar
  5. 5.
    I. N. Pigarev, “A manipulator for microelectrode studies of neurons in the brain without removal of the dura mater,” Fiziol. Zh. SSSR, 63, No. 7, 1060–1062 (1977).Google Scholar
  6. 6.
    I. N. Pigarev, “The visceral theory of sleep,” Zh. Vyssh. Nerv. Deyat., 63, No. 1, 86–104 (2013).Google Scholar
  7. 7.
    I. N. Pigarev, N. G. Bibikov, and I. I. Busygina, “Changes in the intraventricular medium during sleep influences the statistical characteristics of neuron activity in the cerebral cortex,” Ros. Fiziol. Zh., 100, 722–736 (2014).Google Scholar
  8. 8.
    F. N. Serkov, E. Sh. Yanovskii, and A. N. Tal’nov, “Monosynaptic inhibitory postsynaptic potentials of cerebral cortex neurons,” Neirofiziologiya, 7, No. 5, 458–467 (1975).Google Scholar
  9. 9.
    S. Sh. Rapoport and I. G. Silkis, “Simultaneous activity of close-lying neurons in the visual cortex of conscious cats,” Zh. Vyssh. Nerv. Deyat., 31, No. 4, 812–818 (1981).Google Scholar
  10. 10.
    V. N. Chernigovskii, Interoceptors, Medgiz, Moscow (1960).Google Scholar
  11. 11.
    E. Sh. Yanovskii and V. M. Kienko, “Interneuronal interactions in the auditory cortex of conscious cats,” Neirofiziologiya, 16, No. 2, 161–167 (1984).Google Scholar
  12. 12.
    D. Berger, D. Warren, R. Normann, et al., “Spatially organized spike correlation in cat visual cortex,” Neurocomputing, 70, 2112–2116 (2007).CrossRefGoogle Scholar
  13. 13.
    M. Вrosh and C. E. Shreiner, “Correlation between neural discharges are related to receptive field properties in cat auditory cortex,” Eur. J. Neurosci., 11, 3517–3530 (1999).CrossRefGoogle Scholar
  14. 14.
    S. Castro, A. Falconi, M. H. Chase, and P. Torterolo, “Coherent neocortical 40-Hz oscillations are not present during REM sleep,” Eur. J. Neurosci., 37, 1330–1339 (2013).CrossRefPubMedGoogle Scholar
  15. 15.
    S. Chauvette, M. Volgushev, and I. Timofeev, “Origin of active states in local neocortical networks during slow sleep oscillation,” Cereb. Cortex, 20, 2660–2674 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    A. Compte, M. V. Sanchez-Vives, D. A. McCormick, and X. J. Wang, “Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model,” J. Neurophysiol., 89, No. 5, 2707–2725 (2003).CrossRefPubMedGoogle Scholar
  17. 17.
    D. Contreras and M. Steriade, “Synchronization of low-frequency rhythms in corticothalamic network,” Neuroscience, 76, 11–24 (1997).CrossRefPubMedGoogle Scholar
  18. 18.
    A. Destexhe, D. Contreras, and M. Steriade, “Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states,” J. Neurosci., 19, 4595–4608 (1999).CrossRefPubMedGoogle Scholar
  19. 19.
    J. W. Dikson and G. L. Gernstein, “Interaction between neurons in auditory cortex of the cat,” J. Neurophysiol., 37, No. 6, 1239–1261 (1974).CrossRefGoogle Scholar
  20. 20.
    J. J. Eggermont, G. M. Smith, and D. Bowman, “Spontaneous burst firing in cat primary auditory cortex: age and depth dependence and its effect on neural interaction measures,” J. Neurophysiol., 69, 1292–1313 (1993).CrossRefPubMedGoogle Scholar
  21. 21.
    J. J. Eggermont, “Properties of correlated neural activity cluster in cat auditory cortex resemble those of neural assemblies,” J. Neurophysiol., 96, 746–764 (2006).CrossRefPubMedGoogle Scholar
  22. 22.
    I. A. Erchova, M. A. Lebedev, and M. E. Diamond, “Somatosensory cortical neuronal population activity across states of anesthesia,” Eur. J. Neurosci., 15, 744–752 (2002).CrossRefPubMedGoogle Scholar
  23. 23.
    A. C. Foster and G. E. Fagg, “Neurobiology. Taking apart NMDA receptors,” Nature, 329, No. 6138, 395–396 (1987).CrossRefPubMedGoogle Scholar
  24. 24.
    M. Graupner and A. D. Reyes, “Synaptic input correlations leading to membrane potential decorrelation of spontaneous activity in cortex,” J. Neurosci., 33, No. 38, 15,075–15,085 (2013).CrossRefGoogle Scholar
  25. 25.
    X. Huang and S. G. Lisberger, “Circuit mechanisms revealed by spike-timing correlations in macaque area MT,” J. Neurophysiol., 109, 851–866 (2013).CrossRefPubMedGoogle Scholar
  26. 26.
    W. J. Jermakowicz, X. Chen, I. Khaytin, et al., “Relationship between spontaneous and evoked spike-time correlations in primate visual cortex,” J. Neurophysiol., 101, 2279–2289 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    E. B. Issa and X. Wang, “Increased neural correlations in primate auditory cortex during slow-wave sleep,” J. Neurophysiol., 109, 2732–2738 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    J. Ma and G. Lowe, “Correlated firing in tufted cells of mouse olfactory bulb,” Neuroscience, 169,1715–1738 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    D. S. Modha, R. Singh, and M. Mishkin, “Network architecture of the long-distance pathways in the macaque brain,” Proc. Natl. Acad. Sci. USA, 107, No. 30, 13,485–13,490 (2010).CrossRefGoogle Scholar
  30. 30.
    H. Noda and W. R. Adey, “Firing of neuron pairs in cat association cortex during sleep and wakefulness,” J. Neurophysiol., 33, No. 5, 672–684 (1970).CrossRefPubMedGoogle Scholar
  31. 31.
    M. Okun and I. Lampl, “Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities,” Nat. Neurosci., 11, 535–537 (2008).CrossRefPubMedGoogle Scholar
  32. 32.
    M. Okun, N. A. Steinmetz, L. Cossell, et al., “Diverse coupling of neurons to populations in sensory cortex,” Nature, 521, No. 7553, 511–515 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    T. Otsuka and Y. Kawaguchi, “Common excitatory synaptic inputs to electrically connected cortical fast-spiking cell networks,” J. Neurophysiol., 110, 795–806 (2013).CrossRefPubMedGoogle Scholar
  34. 34.
    C. Pedreira, J. Martinez, M. J. Ison, and R. Q. Quiroga, “How many neurons can we see with current spike sorting algorithms?” J. Neurosci. Meth., 211, No. 1, 58–65 (2012).CrossRefGoogle Scholar
  35. 35.
    A. Peyrache, N. Dehghani, and E. N. Eskandar, “Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep,” Proc. Natl. Acad. Sci. USA, 109, 1731–1736 (2012).CrossRefPubMedGoogle Scholar
  36. 36.
    I. N. Pigarev and E. I. Rodionova, “Two visual areas located in the middle suprasylvian gyrus (cytoarchitectonic field 7) of the cat’s cortex,” Neuroscience, 85, No. 3, 717–732 (1998).CrossRefPubMedGoogle Scholar
  37. 37.
    I. N. Pigarev, Y. B. Saalmann, and T. R. Vidyasagar, “A minimally invasive and reversible system for chronic recordings from multiple brain sites in macaque monkeys,” J. Neurosci. Meth., 181, No. 2, 151–158 (2009).CrossRefGoogle Scholar
  38. 38.
    F. Reinoso-Suarez, Topographischer Hirnatlas der Katze für experimental-physiologische Untersuchungen, Merck, Darmstadt (1961).Google Scholar
  39. 39.
    S. Sakata and K. D. Harris, “Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex,” Neuron, 64, 404–418 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    M. A. Smith and A. Kohn, “Spatial and temporal scales of neuronal correlation in primary visual cortex,” J. Neurosci., 28, 12591–12603 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    M. Steriade, I. Timofeev, and F. Grenier, “Natural waking and sleep states: a view from inside neocortical neurons,” J. Neurophysiol., 85, 1969–1985 (2001).CrossRefPubMedGoogle Scholar
  42. 42.
    M. Volgushev, S. Chauvette, M. Mukovski, and I. Timofeev, “Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations,” J. Neurosci., 26, 5665–5672 (2006).CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    M. Zimmerman, “Ethical principles for maintenance and use of animals in neuroscience research,” Neurosci. Lett., 73, 1 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Andreev Acoustics InstituteMoscowRussia
  2. 2.Kharkevich Institute of Information Transmission ProblemsRussian Academy of Sciences (IITP RAS)MoscowRussia

Personalised recommendations