Skip to main content

Advertisement

Log in

Synergistic Application of Zinc and Vitamin C to Support Memory and Attention and to Decrease the Risk of Developing Nervous System Diseases

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Provision of the body with zinc and vitamin C is important for CNS functioning. Zinc ions take part in neurotransmission (transmission of signals from acetylcholine, catecholamine, serotonin, and prostaglandin receptors) and in ubiquitin-dependent protein degradation. Zinc deficiency is associated with the development of Alzheimer’s disease and depression. Zinc supplementation (10–30 mg/day) improves neurological recovery in patients with stroke and closed craniocerebral injury and also improves measures of attention; it decreases hyperactivity in children. Vitamin C is a synergist of zinc which supports the antioxidant resources of the brain, synaptic activity, and detoxification. Vitamin C supplements at a dose of 130–500 mg/day are recommended for the prophylaxis of dementia and neurodegenerative pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Mackenzie, G. A. Salvador, C. Romero, et al., “A deficit in zinc availability can cause alterations in tubulin thiol redox status in cultured neurons and in the developing fetal rat brain,” Free Radic. Biol. Med., 51, No. 2, 480–489 (2011), https://doi.org/10.1016/j.freeradbiomed.2011.04.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. I. Yu. Torshin and O. A. Gromova, Expert Data Analysis in Pharmacology, MCNMCO, Moscow (2012).

    Google Scholar 

  3. V. G. Rebrov and O. A. Gromova, Vitamins, Macroelements and Trace Elements, GeotarMed, Moscow (2008).

    Google Scholar 

  4. A. I. Acuña, M. Esparza, C. Kramm, et al., “A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington’s disease in mice,” Nat. Commun., 4, 2917–2919 (2013), https://doi.org/10.1038/ncomms3917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. I. Yu. Torshin, “Sensing the change from molecular genetics to personalized medicine,” in: Bioinformatics in the Post-Genomic Era, Nova Biomedical Books, New York (2009), ISBN 1-60692-217-0.

  6. Y. Kulathu, M. Akutsu, A. Bremm, et al., “Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain,” Nat. Struct. Mol. Biol., 16, No. 12, 1328–1330 (2009), https://doi.org/10.1038/nsmb.1731.

    Article  CAS  PubMed  Google Scholar 

  7. G. Takaesu, S. Kishida, A. Hiyama, et al., “TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway,” Mol. Cell, 5, No. 4, 49–658 (2000), https://doi.org/10.1016/s1097-2765(00)80244-0.

    Article  Google Scholar 

  8. S. Lopes da Silva, B. Vellas, S. Elemans, et al., “Plasma nutrient status of patients with Alzheimer’s disease: Systematic review and meta-analysis,” Alzheimers Dement., 10, No. 4, 485–502 (2014), https://doi.org/10.1016/j.jalz.2013.05.1771.

    Article  PubMed  Google Scholar 

  9. W. Swardfager, N. Herrmann, G. Mazereeuw, et al., “Zinc in depression: a meta-analysis,” Biol. Psychiatry, 74, No. 12, 872–878 (2013), https://doi.org/10.1016/j.biopsych.2013.05.008.

    Article  CAS  PubMed  Google Scholar 

  10. R. Aquilani, P. Baiardi, M. Scocchi, et al., “Normalization of zinc intake enhances neurological retrieval of patients suffering from ischemic strokes,” Nutr. Neurosci., 12, No. 5, 219–225 (2009), https://doi.org/10.1179/147683009X423445.

    Article  CAS  PubMed  Google Scholar 

  11. B. Young, L. Ott, E. Kasarskis, et al., “Zinc supplementation is associated with improved neurologic recovery rate and visceral protein levels of patients with severe closed head injury,” J. Neurotrauma, 13, No. 1, 25–34 (1996), https://doi.org/10.1089/neu.1996.13.25.

    Article  CAS  PubMed  Google Scholar 

  12. N. B. Mathur and D. K. Agarwal, “Zinc supplementation in preterm neonates and neurological development. A randomized controlled trial,” Indian Pediatr., 52, No. 11, 951–955 (2015), https://doi.org/10.1007/s13312-015-0751-6.

    Article  CAS  PubMed  Google Scholar 

  13. J. Colombo, N. Zavaleta, K. N. Kannass, et al., “Zinc supplementation sustained normative neurodevelopment in a randomized, controlled trial of Peruvian infants aged 6-18 months,” J. Nutr., 144, No. 8, 298–1305 (2014), https://doi.org/10.3945/jn.113.189365.

    Article  CAS  Google Scholar 

  14. J. Zamora, A. Velásquez, L. Troncoso, et al., “Zinc in the therapy of the attention-deficit/hyperactivity disorder in children. A preliminary randomized controlled trial,” Arch. Latinoam. Nutr., 61, No. 3, 242–246 (2011), https://doi.org/10.1186/isrctn03732556.

    Article  CAS  PubMed  Google Scholar 

  15. U. Himmelreich, K. N. Drew, A. S. Serianni, and P. W. Kuchel, “13C NMR studies of vitamin C transport and its redox cycling in human erythrocytes,” Biochemistry, 37, 7578–7588 (1998), https://doi.org/10.1021/bi970765s.

    Article  CAS  PubMed  Google Scholar 

  16. T. Ishikawa, A. F. Casini, and M. Nishikimi, “Molecular cloning and functional expression of rat liver glutathione-dependent dehydroascorbate reductase,” J. Biol. Chem., 273, 28708–28712 (1998), https://doi.org/10.1074/jbc.273.44.28708.

    Article  CAS  PubMed  Google Scholar 

  17. M. A. Castro, F. A. Beltrán, S. Brauchi, and I. I. Concha, “A metabolic switch in brain: Glucose and lactate metabolism modulation by ascorbic acid,” J. Neurochem., 110, 423–440 (2009), https://doi.org/10.1111/j.1471-4159.2009.06151.x.

    Article  CAS  PubMed  Google Scholar 

  18. B. Peterkofsky, “Ascorbate requirement for hydroxylation and secretion of procollagen: Relationship to inhibition of collagen synthesis in scurvy,” Am. J. Clin Nutr., 54, 1135–1140 (1991), https://doi.org/10.1016/s0174-173x(87)80045-6.

    Article  Google Scholar 

  19. H. Padh, “Cellular functions of ascorbic acid,” Biochem. Cell Biol., 68, 1166–1173 (1990), https://doi.org/10.1139/o90-173.

    Article  CAS  PubMed  Google Scholar 

  20. M. Levine, Y. Wang, and S. C. Rumsey, “Analysis of ascorbic acid and dehydroascorbic acid in biological samples,” Methods Enzymol., 299, 65–76 (1999), https://doi.org/10.1002/0471140856.tx0706s12.

    Article  CAS  PubMed  Google Scholar 

  21. G. N. Levine, B. Frei, S. N. Koulouris, et al., “Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease,” Circulation, 93, 1107–1113 (1996), https://doi.org/10.1161/01.cir.93.6.1107.

    Article  CAS  PubMed  Google Scholar 

  22. M. I. Naseer, N. Ullah, I. Ullah, et al., “Vitamin C protects against ethanol and PTZ-induced apoptotic neurodegeneration in prenatal rat hippocampal neurons,” Synapse, 65, 562–571 (2011), https://doi.org/10.1002/syn.20875.

    Article  CAS  PubMed  Google Scholar 

  23. I. M. Santos, R. Tome Ada, G. B. Saldanha, et al., “Oxidative stress in the hippocampus during experimental seizures can be ameliorated with the antioxidant ascorbic acid,” Oxid. Med. Cell. Longev., 2, 214–221 (2009), https://doi.org/10.4161/oxim.2.4.8876.

    Article  PubMed  PubMed Central  Google Scholar 

  24. S. Qiu, L. Li, E. J. Weeber, and J. M. May, “Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity,” J. Neurosci. Res., 85, 1046–1056 (2007), https://doi.org/10.1002/jnr.21204.

    Article  CAS  PubMed  Google Scholar 

  25. B. Ghasemzadeh, J. Cammack, and R. N. Adams, “Dynamic changes in extracellular fluid ascorbic acid monitored by in vivo electrochemistry,” Brain Res., 547, 162–166 (1991), https://doi.org/10.1016/0006-8993(91)90587-l.

    Article  CAS  PubMed  Google Scholar 

  26. L. Lee, S. A. Kang, H. O. Lee, et al., “Relationships between dietary intake and cognitive function level in Korean elderly people,” Public Health, 115, 133–138 (2001), https://doi.org/10.1016/s0033-3506(01)00432-2.

    Article  CAS  PubMed  Google Scholar 

  27. R. M. Ortega, A. M. Requejo, P. Andres, et al., “Dietary intake and cognitive function in a group of elderly people,” Am. J. Clin Nutr., 66, 803–809 (1997), https://doi.org/10.1016/s0033-3506(01)00432-2.

    Article  CAS  PubMed  Google Scholar 

  28. M. C. Polidori, D. Pratico, F. Mangialasche, et al., “High fruit and vegetable intake is positively correlated with antioxidant status and cognitive performance in healthy subjects,” J. Alzheimers Dis., 17, 921–927 (2009), https://doi.org/10.3233/jad-2009-1114.

    Article  CAS  PubMed  Google Scholar 

  29. G. McNeill, X. Jia, L. J. Whalley, et al., “Antioxidant and B vitamin intake in relation to cognitive function in later life in the Lothian birth cohort 1936,” Eur. J. Clin. Nutr., 65, No. 5, 619–626 (2011), https://doi.org/10.1038/ejcn.2011.2.

    Article  CAS  PubMed  Google Scholar 

  30. J. S. Goodwin, J. M. Goodwin, and P. J. Garry, “Association between nutritional status and cognitive functioning in a healthy elderly population,” JAMA, 249, No. 21, 2917–2921 (1983), https://doi.org/10.1001/JAMA.1983.03330450047024.

    Article  CAS  PubMed  Google Scholar 

  31. C. R. Gale, C. N. Martyn, and C. Cooper, “Cognitive impairment and mortality in a cohort of elderly people,” BMJ, 312, 608–611(1996), https://doi.org/10.1136/BMJ.312.7031.608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. W. J. Perrig, P. Perrig, and H. B. Stahelin, “The relation between antioxidants and memory performance in the old and very old,” J. Am. Geriatr. Soc., 45, 718–724 (1997), https://doi.org/10.1111/j.1532-5415.1997.tb01476.x.

    Article  CAS  PubMed  Google Scholar 

  33. H. J. Wengreen, R. G. Munger, C. D. Corcoran, et al., “Antioxidant intake and cognitive function of elderly men and women: the Cache County Study,” J. Nutr. Health Aging, 11, 230–237 (2007), https://doi.org/10.1016/s0197-4580(04)81561-6.

    Article  CAS  PubMed  Google Scholar 

  34. R. D. O’Neill, M. Fillenz, L. Sundstrom, and J. N. Rawlins, “Voltammetrically monitored brain ascorbate as an index of excitatory amino acid release in the unrestrained rat,” Neurosci. Lett., 52, 227–233 (1984), https://doi.org/10.1016/0304-3940(84)90166-6.

    Article  PubMed  Google Scholar 

  35. P. Rinaldi, M. C. Polidori, A. Metastasio, et al., “Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease,” Neurobiol. Aging, 24, 915–919 (2003), https://doi.org/10.1016/s0197-4580(03)00031-9.

    Article  CAS  PubMed  Google Scholar 

  36. K. C. Fitzgerald, E. J. O’Reilly, E. Fondell, et al., “Intakes of vitamin C and carotenoids and risk of amyotrophic lateral sclerosis: Pooled results from 5 cohort studies,” Ann. Neurol., 73, 236–245 (2013), https://doi.org/10.1002/ana.23820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. K. H. Masaki, K. G. Losonczy, G. Izmirlian, et al., “Association of vitamin E and C supplement use with cognitive function and dementia in elderly men,” Neurology, 54, 1265–1272 (2000), https://doi.org/10.1212/wnl.54.6.1265.

    Article  CAS  PubMed  Google Scholar 

  38. M. J. Engelhart, M. I. Geerlings, A. Ruitenberg, et al., “Dietary intake of antioxidants and risk of Alzheimer disease,” JAMA, 287, No. 24, 3223–3229 (2002), https://doi.org/10.1001/jama.287.24.3223.

    Article  CAS  Google Scholar 

  39. A. Neymotin, S. Petri, N. Y. Calingasan, et al., “Lenalidomide (revlimid) administration at symptom onset is neuroprotective in a mouse model of amyotrophic lateral sclerosis,” Exp. Neurol., 220, 191–197 (2009), https://doi.org/10.1016/j.expneurol.2009.08.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. K. Okamoto, T. Kihira, G. Kobashi, et al., “Fruit and vegetable intake and risk of amyotrophic lateral sclerosis in Japan,” Neuroepidemiology, 32, No. 4, 251–256 (2009), Epub 2009 Feb 11, 10.1159/000201563.

  41. G. V. Rebec and R. C. Pierce, “A vitamin as neuromodulator: Ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission,” Prog. Neurobiol., 43, 537–565 (1994), https://doi.org/10.1016/0301-0082(94)90052-3.

    Article  CAS  PubMed  Google Scholar 

  42. J. L. Dorner, B. R. Miller, E. L. Klein, et al., “Corticostriatal dysfunction underlies diminished striatal ascorbate release in the R6/2 mouse model of Huntington’s disease,” Brain Res., 1290, 111–120 (2009), https://doi.org/10.1016/j.brainres.2009.07.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. K. Ide, H. Yamada, K. Umegaki, et al., “Lymphocyte vitamin C levels as potential biomarker for progression of Parkinson’s disease,” Nutrition, 31, No. 2, 406–408 (2015), https://doi.org/10.1016/j.nut.2014.08.001.

    Article  CAS  PubMed  Google Scholar 

  44. H. Nagayama, M. Hamamoto, M. Ueda, et al., “The effect of ascorbic acid on the pharmacokinetics of levodopa in elderly patients with Parkinson disease,” Clin. Neuropharmacol., 27, 270–273 (2004), https://doi.org/10.1097/01.wnf.0000150865.21759.bc.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Gromova.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 117, No. 7, Iss. 1, pp. 112–119, July, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromova, O.A., Torshin, I.Y., Pronin, A.V. et al. Synergistic Application of Zinc and Vitamin C to Support Memory and Attention and to Decrease the Risk of Developing Nervous System Diseases. Neurosci Behav Physi 49, 357–364 (2019). https://doi.org/10.1007/s11055-019-00740-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00740-0

Keywords

Navigation