Neuroscience and Behavioral Physiology

, Volume 48, Issue 2, pp 233–250 | Cite as

Early Life Stress: Consequences for the Development of the Brain

  • N. A. Malinovskaya
  • A. V. Morgun
  • O. L. Lopatina
  • Yu. A. Panina
  • V. V. Volkova
  • E. L. Gasymly
  • T. E. Taranushenko
  • A. B. Salmina

This literature review demonstrates the importance and consequences of early life stress for the development of the brain and its role in the formation of neurological and mental illnesses (particularly depression). The most dangerous is chronic early life stress during the neonatal period of development in the first days after birth, when the effects on the development of the brain, neuro-, synapto-, and glio-, and angiogenesis are the most stable. Among all the neuropsychological effects of early life stress, the most common are apparent as depressive disorders in humans and animals, and this constitutes a widely used model of experimental depression in rodents.


early life stress animal models depression neurogenesis angiogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aisa, B., Elizalde, N., Tordera, R., et al., “Effects of neonatal stress on markers of synaptic plasticity in the hippocampus: implications for spatial memory,” Hippocampus, 19, No. 12, 1222–1231 (2009).CrossRefPubMedGoogle Scholar
  2. Ali, I., O’Brien, P., Kumar, G., et al., “Enduring effects of early life stress on firing patterns of hippocampal and thalamocortical neurons in rats: implications for limbic epilepsy,” PLoS One, 8, No. 6, e66962 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  3. Avishai-Eliner, S., Gilles, E. E., Eghbal-Ahmadi, M., et al., “Altered regulation of gene and protein expression of hypothalamic-pituitary-adrenal axis components in an immature rat model of chronic stress,” J. Neuroendocrinol., 13, No. 9, 799–807 (2001).CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baek, S. B., Bahn, G., Moon, S. J., et al., “The phosphodiesterase type-5 inhibitor, tadalafil, improves depressive symptoms, ameliorates memory impairment, as well as suppresses apoptosis and enhances cell proliferation in the hippocampus of maternal-separated rat pups,” Neurosci. Lett., 488, No. 1, 26–30 (2011).CrossRefPubMedGoogle Scholar
  5. Baek, S. S., Jun T. W., Kim, K. J., et al., “Effects of postnatal treadmill exercise on apoptotic neuronal cell death and cell proliferation of maternal-separated rat pups,” Brain Dev., 34, No. 1, 45–56 (2012).CrossRefPubMedGoogle Scholar
  6. Bagot, R. C., van Hasselt, E. N., Champagne, D. L., et al., “Maternal care determines rapid effects of stress mediators on synaptic plasticity in adult rat hippocampal dentate gyrus,” Neurobiol. Learn. Mem., 92, No. 3, 292–300 (2009).CrossRefPubMedGoogle Scholar
  7. Bakos, J., Duncko, R., Makatsori, A., et al., “Prenatal immune challenge affects growth, behavior, and brain, dopamine in offspring,” Ann. N. Y. Acad. Sci., 1018, 281–287 (2004).CrossRefPubMedGoogle Scholar
  8. Bale, T. L., “Epigenetic and transgenerational reprogramming of brain development,” Nat. Rev. Neurosci., 16, No. 6, 332–344 (2015).CrossRefPubMedGoogle Scholar
  9. Bayer, S. A., Altman, J., Russo, R. J., and Zhang, X., “Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat,” Neurotoxicology, 14, No. 1, 83–144 (1993).PubMedGoogle Scholar
  10. Beck, S. L. and Gavin D. L., “Susceptibility of mice to audiogenic seizures is increased by handling their dams during gestation,” Science, 193, No. 4251, 427–428 (1976).CrossRefPubMedGoogle Scholar
  11. Bilbo, S. D. and Schwarz J. M., “Early-life programming of later-life brain and behavior: a critical role for the immune system,” Front. Behav. Neurosci., 3, 1–14 (2009).CrossRefGoogle Scholar
  12. Boersma, G. J. and Tamashiro K. L., “Individual differences in the effects of prenatal stress exposure in rodents,” Neurobiol. Stress, 1, 100–108 (2015).CrossRefPubMedGoogle Scholar
  13. Boisse, L., Spencer, S. J., Mouihate, A., et al., “Neonatal immune challenge alters nociception in the adult rat,” Pain, 119, No. 1–3, 133–141 (2005).CrossRefPubMedGoogle Scholar
  14. Boldrini, M., Hen, R., Underwood, M. D., et al., “Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression,” Biol. Psychiatry, 72, No. 7, 562–571 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brunson, K. L., Kramar, E., Lin, B., et al., “Mechanisms of late-onset cognitive decline after early-life stress,” J. Neurosci., 25, No. 41, 9328–9338 (2005).CrossRefPubMedPubMedCentralGoogle Scholar
  16. Brunton, P. J., “Programming the brain and behaviour by early-life stress: a focus on neuroactive steroids,” J. Neuroendocrinol., 27, No. 6, 468–480 (2015).CrossRefPubMedGoogle Scholar
  17. Carr, C. P., Martins, C. M., Stingel, A. M., et al., “The role of early life stress in adult psychiatric disorders: a systematic review according to childhood trauma subtypes,” J. Nerv. Ment. Dis., 201. No. 12, 1007–1020 (2013).CrossRefPubMedGoogle Scholar
  18. Clancy, B., Finlay, B. L., Darlington, R. B., and Anand, K. J., “Extrapolating brain development from experimental species to humans,” Neurotoxicology, 28, No. 5, 931–937 (2007).CrossRefPubMedGoogle Scholar
  19. Cohen, R. A., Grieve, S., Hoth, K. E., et al., “Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei,” Biol. Psychiatry, 59, No. 10, 975–982 (2006).CrossRefPubMedGoogle Scholar
  20. Comasco, E., Todkar, A., Granholm, L., et al., “Alpha 2a-adrenoceptor gene expression and early life stress-mediated propensity to alcohol drinking in outbred rats,” Int. J. Environ. Res. Public Health, 12, No. 7, 7154–7171 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  21. Coyle, P., Tran, N., Fung, J. N., et al., “Maternal dietary zinc supplementation prevents aberrant behaviour in an object recognition task in mice offspring exposed to LPS in early pregnancy,” Behav. Brain Res., 197, No. 1, 210–218 (2009).CrossRefPubMedGoogle Scholar
  22. Cui, K., Ashdown, H., Luheshi, G. N., and Boksa, P., “Effects of prenatal immune activation on hippocampal neurogenesis in the rat,” Schizophr. Res., 113, No. 2–3, 288–297 (2009).CrossRefPubMedGoogle Scholar
  23. Dalle Molle, R., Portella, A. K., Goldani, M. Z., et al., “Associations between parenting behavior and anxiety in a rodent model and a clinical sample: relationship to peripheral BDNF levels,” Transl. Psychiatry, 2, el95 (2012).CrossRefGoogle Scholar
  24. Edwards, H. E., Dortok, D., Tam, J., et al., “Prenatal stress alters seizure thresholds and the development of kindled seizures in infant and adult rats,” Harm. Behav., 42, No. 4, 437–447 (2002).CrossRefGoogle Scholar
  25. Eisch, A. J. and Petrik D., “Depression and hippocampal neurogenesis: a road to remission,” Science, 338, No. 6103, 72–75 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fabricius, K., Wortwein, G., and Pakkenberg, B., “The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus,” Brain Struct. Funct., 212, No. 5, 403–416 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  27. Favre, M. R., Barkat, T. R., Lamendola, D., et al., “General developmental health in the VPA-rat model of autism,” Front Behav. Neurosci., 7: 1–11 (2013).CrossRefGoogle Scholar
  28. Fortier, M. E., Joober, R., Luheshi, G. N., and Boksa, P., “Maternal exposure to bacterial endotoxin during pregnancy enhances amphetamine-induced locomotion and startle responses in adult rat offspring,” J. Psychiatr Res., 38, No. 3, 335–345 (2004).CrossRefPubMedGoogle Scholar
  29. Gilles, E. E., Schultz, L., and Baram, T. Z., “Abnormal corticosterone regulation in an immature rat model of continuous chronic stress,” Pediatr. Neurol., 15, No. 2, 114–119 (1996).CrossRefPubMedPubMedCentralGoogle Scholar
  30. Girardi, C. E., Zanta, N. C., and Suchecki, D., “Neonatal stress-induced affective changes in adolescent Wistar rats: early signs of schizophrenia-like behavior,” Front Behav. Neurosci., 8, 1–9 (2014).CrossRefGoogle Scholar
  31. Golan, H. M., Lev, V. Hallak, M., et al., “Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy,” Neuropharmacology, 48, No. 6, 903–917 (2005).CrossRefPubMedGoogle Scholar
  32. Gomez-Gonzalez, B. and Escobar A., “Altered functional development of the blood-brain barrier after early life stress in the rat,” Brain Res. Bull., 79, No. 6, 376–387 (2009).CrossRefPubMedGoogle Scholar
  33. Gunn, B. G., Cunningham, L., Cooper, M. A., et al., “Dysfunctional astrocytic and synaptic regulation of hypothalamic glutamatergic transmission in a mouse model of early-life adversity: relevance to neurosteroids and programming of the stress response,” J. Neurosci., 33, No. 50: 19534–19554 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gutman, D. A. and Nemeroff C. B., “Neurobiology of early life stress: rodent studies,” Semin. Clin. Neuropsychiatry, 7, No. 2, 89–95 (2002).CrossRefPubMedGoogle Scholar
  35. Hanson, J. L., Nacewicz, B. M., Sutterer, M. J., et al., “Behavioral problems after early life stress: contributions of the hippocampus and amygdala,” Biol. Psychiatry, 77, No. 4, 314–323 (2015).CrossRefPubMedGoogle Scholar
  36. Hara, Y., Maeda, Y., Kataoka, S., et al., “Effect of prenatal valproic acid exposure on cortical morphology in female mice,” J. Pharmacol. Sci., 118, No. 4, 543–546 (2012).CrossRefPubMedGoogle Scholar
  37. Harrison, E. L. and Baune B. T., “Modulation of early stress-induced neurobiological changes: a review of behavioural and pharmacological interventions in animal models,” Transl. Psychiatry, 4, 1–18 (2014).CrossRefGoogle Scholar
  38. Hava, G., Vered, L., Yael, M., et al., “Alterations in behavior in adult offspring mice following maternal inflammation during pregnancy,” Dev. Psychobiol., 48, No. 2, 162–168 (2006).CrossRefPubMedGoogle Scholar
  39. Hellemans, K. G., Sliwowska, J. H., Verma, P., and Weinberg, J., “Prenatal alcohol exposure: Fetal programming and later life vulnerability to stress, depression and anxiety disorders,” Neurosci. Biobehav. Rev., 34, No. 6, 791–807 (2010).CrossRefPubMedGoogle Scholar
  40. Hornig, M., Solbrig, M., Horscroft, N., et al., “Boma disease virus infection of adult and neonatal rats: models for neuropsychiatric disease,” Curr. Top Microbiol. Immunol., 253, 157–177 (2001).PubMedGoogle Scholar
  41. Huang, L. T., “Early-life stress impacts the developing hippo-campus and primes seizure occurrence: cellular, molecular, and epigenetic, mechanisms,” Front. Mol. Neurosci., 7, 1–15 (2014).CrossRefGoogle Scholar
  42. Huishof, H. J., Novati, A., Sgoifo, A., et al., “Maternal separation decreases adult hippocampal cell proliferation and impairs cognitive performance but has little effect on stress sensitivity and anxiety in adult Wistar rats,” Behav. Brain Res., 216, No. 2, 552–560 (2011).CrossRefGoogle Scholar
  43. Huot, R. L., Plotsky, P. M., Lenox, R. H., and McNamara, R. K., “Neonatal maternal separation reduces hippocampal mossy fiber density in adult Long Evans rats,” Brain Res., 950, No. 1–2, 52–63 (2002).CrossRefPubMedGoogle Scholar
  44. Jasarevic, E., Rodgers, A. B., and Bale, T. L., “A novel role for maternal stress and microbial transmission in early life programming and neurodevelopment,” Neurobiol. Stress, No. 1, 81–88 (2015).Google Scholar
  45. Karalcal, P., Bozkir, M. G., Dere, E., et al., “The effects of maternal deprivation on the hippocampal structure in adult rats,” Can. J. Neurol. Sci., 36, No. 3, 356–362 (2009).CrossRefGoogle Scholar
  46. Kikusui, T. and Mori, Y., “Behavioural and neurochemical consequences of early weaning in rodents,” J. Neuroendocrinol., 21, No. 4, 427–431 (2009).CrossRefPubMedGoogle Scholar
  47. Kinast, K., Peeters, D., Kolk, S. M., et al., “Genetic and pharmacological manipulations of the serotonergic system in early life: neurodevelopmental underpinnings of autism-related behavior,” Front Cell. Neurosci., 7, 1–17 (2013).CrossRefGoogle Scholar
  48. Kohman, R. A., Tarr, A. J., Sparkman, N. L., et al., “Neonatal endotoxin exposure impairs avoidance learning and attenuates endotoxin-induced sickness behavior and central IL-1beta gene transcription in adulthood,” Behav. Brain Res., 194, No. 1, 25–31 (2008).CrossRefPubMedGoogle Scholar
  49. Korosi, A., Naninck, E. E., Oomen, C. A., et al., “Early-life stress mediated modulation of adult neurogenesis and behavior,” Behav. Brain Res., 227, No. 2, 400–409 (2012).CrossRefPubMedGoogle Scholar
  50. Krivoruchenko, V. K., “Child abuse: occurrence and prevention,” (2012), acc. Feb. 2, 2016.
  51. Kuipers, S. D., Bramham, C. R., Cameron, H. A., et al., “Environmental control of adult neurogenesis: from hippocampal homeostasis to behavior and disease,” Neural Plast., 2014, 1–3 (2014).CrossRefGoogle Scholar
  52. Kumar, G., Jones, N. C., Morris, M. J., et al., “Early life stress enhancement of limbic epileptogenesis in adult rats: mechanistic insights,” PLoS One, 6, No. 9, e24033 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lajud, N. and Tomer L., “Early life stress and hippocampal neurogenesis in the neonate: sexual dimorphism, long term consequences and possible mediators,” Front. Mol. Neurosci., 8, 1–10 (2015).CrossRefGoogle Scholar
  54. Lajud, N., Roque, A., Cajero, M., et al., “Periodic maternal separation decreases hippocampal neurogenesis without affecting basal corticosterone during the stress hyporesponsive period, but alters HPA axis and coping behavior in adulthood,” Psychoneuroendocrinology, 37, No. 3, 410–420 (2012).CrossRefPubMedGoogle Scholar
  55. Lewis, A. J., Galbally, M., Gannon, T., and Symeonides, C., “Early life programming as a target for prevention of child and adolescent mental disorders,” BMC Med., 12, 33: 1–15 (2014).Google Scholar
  56. Loi, M., Koricka, S., Lucassen, P. J., and Joels, M., “Age- and sex-dependent effects of early life stress on hippocampal neurogenesis,” Front. Endocrinol. (Lausanne), 5, 1–11 (2014).Google Scholar
  57. Lyons, D. M., Parker, K. J., and Schatzberg, A. E., “Animal models of early life stress: implications for understanding resilience,” Dev. Psychobiol., 52, No. 7, 616–624 (2010).CrossRefPubMedGoogle Scholar
  58. Malter Cohen, M., Jing, D., Yang, R. R., et al., “Early-life stress has persistent effects on amygdala function and development in mice and humans,” Proc. Natl. Acad. Sci. USA, 110, No. 45, 18274–18278 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  59. Marmendal, M., Roman, E., Eriksson, C. J., et al., “Maternal separation alters maternal care, but has minor effects on behavior and brain opioid peptides in adult offspring,” Dev. Psychobiol., 45, No. 3, 140–152 (2004).CrossRefPubMedGoogle Scholar
  60. McEwen, B. S., “Understanding the potency of stressful early life experiences on brain and body function,” Metabolism, 57, Suppl. 2, S11–S15 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  61. McKinney, W. T., “Overview of the past contributions of animal models and their changing place in psychiatry,” Semin. Clin. Neuropsychiatry, 6, No. 1, 68–78 (2001).CrossRefPubMedGoogle Scholar
  62. Meyer, U. and Feldon J., “Neural basis of psychosis-related behaviour in the infection model of schizophrenia,” Behav. Brain Res., 204, No. 2, 322–334 (2009).CrossRefPubMedGoogle Scholar
  63. Meyer, U., Feldon, J., Schedlowski, M., and Yee, B. K., “Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia,” Neurosci. Biobehav. Rev., 29, No. 6, 913–947 (2005).CrossRefPubMedGoogle Scholar
  64. Migunova, Yu. V., “Abuse of children in families as a subject of sociological analysis,” Current Problems in Science and Edu cation,, acc. Feb. 10, 2016.
  65. Mirescu, C., Peters, J. D., and Gould, E., “Early life experience alters response of adult neurogenesis to stress,” Nat. Neurosci., 7, No. 8, 841–846 (2004).CrossRefPubMedGoogle Scholar
  66. Molet, J., Maras, P. M., Avishai-Eliner, S., and Baram, T. Z., “Naturalistic rodent models of chronic early-life stress,” Dev. Psychobiol., 56, No. 8, 1675–1688 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  67. Moriceau, S., Shionoya, K., Jakubs, K., and Sullivan, R. M., “Early-life stress disrupts attachment learning: the role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine,” J. Neurosci., 29, No. 50: 15745–15755 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  68. Naninck, E. E., Hoemakers, L., Kakava-Georgiadou, N., et al., “Chronic early life stress alters developmental and adult neurogenesis and impairs cognitive function in mice,” Hippocampus, 25, No. 3, 309–328 (2015).CrossRefPubMedGoogle Scholar
  69. Neigh, G. N., Owens, M. J., Taylor, W. R., and Nemeroff, C. B., “Changes in the vascular area fraction of the hippocampus and amygdala are induced by prenatal dexamethasone and/or adult stress,” J. Cereb. Blood Flow Metabolism., 30, No. 6, 1100–1104 (2010).CrossRefGoogle Scholar
  70. Nugent, N. R., Tyrka, A. R., Carpenter, L. L., and Price, L. H., “Gene-environment interactions: early life stress and risk for depressive and anxiety disorders,” Psychopharmacology (Berl.), 214, No. 1, 175–196 (2011).CrossRefGoogle Scholar
  71. Numbers of Minors Falling Victim to Criminal Assault, Federal State Statistics Service (Rosstat) (2000–2013),, acc. Feb. 10, 2016.
  72. Oomen, C. A., Girardi, C. E., Cahyadi, R., et al., “Opposite effects of early maternal deprivation on neurogenesis in male versus female rats,” PLoS One, 4, No. 1, e3675 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  73. Oomen, C. A., Soeters, H., Audureau, N., et al., “Severe early life stress hampers spatial learning and neurogenesis, but improves hippocampal synaptic plasticity and emotional learning under high-stress conditions in adulthood,” J. Neurosci., 30, No. 19, 6635–6645 (2010).CrossRefPubMedGoogle Scholar
  74. Oomen, C. A., Soeters, H., Audureau, N., et al., “Early maternal deprivation affects dentate gyrus structure and emotional learning in adult female rats,” Psychopharmacology (Berl.), 214, No. 1, 249–260 (2011).CrossRefGoogle Scholar
  75. Orefice, L. L. and Heinrichs, S. C., “Paternal care paradoxically increases offspring seizure susceptibility in the El mouse model of epilepsy,” Epilepsy Behav., 12, No. 1, 234–241 (2008).CrossRefPubMedGoogle Scholar
  76. Pechtel, P. and Pizzagalli, D. A., “Effects of early life stress on cognitive and affective function: an integrated review of human literature,” Psychopharmacology (Berl.), 214, No. 1, 55–70 (2011).CrossRefGoogle Scholar
  77. Pryce, C. R. and Seifritz, E., “A translational research framework for enhanced validity of mouse models of psychopathological states in depression,” Psychoneuroendocrinology, 36, No. 3, 308–329 (2011).CrossRefPubMedGoogle Scholar
  78. Raceková, E., Lievajová, K., Danko, I., et al., “Maternal separation induced alterations of neurogenesis in the rat rostral migratory stream,” Cell. Mol. Neurobiol., 29, No. 6–7, 811–819 (2009).CrossRefPubMedGoogle Scholar
  79. Raineki, C., Cortés, M. R., Belnoue, L., and Sullivan, R. M., “Effects of early-life abuse differ across development: infant social behavior deficits are followed by adolescent depressive-like behaviors mediated by the amygdala,” J. Neurosci., 32, No. 22: 7758–7765 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  80. Raineki, C., Moriceau, S., and Sullivan, R. M., “Developing a neurobehavioral animal model of infant attachment to an abusive caregiver,” Biol. Psychiatry, 67, No. 12: 1137–1145 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  81. Rice, C. J., Sandman, C. A., Lenjavi, M. R., and Baram, T. Z., “A novel mouse model for acute and long-lasting consequences of early life stress,” Endocrinology, 149, No. 10, 4892–4900 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  82. Romero, E., Ali, C., Molina-Holgado, E., et al., “Neurobehavioral and immunological consequences of prenatal immune activation in rats. Influence of antipsychotics,” Neuropsychopharmacology, 32, No. 8, 1791–1804 (2007).CrossRefPubMedGoogle Scholar
  83. Salmina, A. B., Komleva, Yu. K., Kuvacheva, N. V., et al., “Molecular mechanisms of impairments to the development of the brain in preand neonatal period,” Vopr. Sovrem. Ped., No. 6, 15–20 (2012).Google Scholar
  84. Salzberg, M., Kumar, G., Supit, L., et al., “Early postnatal stress confers enduring vulnerability to limbic epileptogenesis,” Epilepsia, 48, No. 11, 2079–2085 (2007).CrossRefPubMedGoogle Scholar
  85. Schmidt, M. V., Wang, X. D., and Meijer, O. C., “Early life stress paradigms in rodents: potential animal models of depression?” Psychophar macology (Berl.), 214, No. 1, 131–140 (2011).CrossRefGoogle Scholar
  86. Schneider, T., Turczak, J., and Przewtocki, R., “Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: issues for a therapeutic approach in autism,” Neuropsychophar macology, 31, No. 1, 36–46 (2006).CrossRefGoogle Scholar
  87. Shanks, N., Windle R. J., Perks P. A., et al., “Early-life exposure to endotoxin alters hypothalamic-pituitary-adrenal function and predisposition to inflammation,” Proc. Natl Acad. Sci. USA, 97, No. 10: 5645–5650 (2000).CrossRefPubMedPubMedCentralGoogle Scholar
  88. Shi, L., Fatemi, S. H., Sidwell, R. W., and Patterson, P. H., “Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring,” J. Neurosci., 23, No. 1, 297–302 (2003).PubMedGoogle Scholar
  89. Suri, D., Veenit, V., Sarkar, A., et al., “Early stress evokes age-dependent biphasic changes in hippocampal neurogenesis, BDNF expression, and cognition,” Biol. Psychiatry, 73, No. 7, 658–666 (2013).CrossRefPubMedGoogle Scholar
  90. Tanapat, P., Galea, L. A., and Gould, E., “Stress inhibits the proliferation of granule cell precursors in the developing dentate gyms,” Int. J. Dev. Neurosci., 16, No. 3–4, 235–239 (1998).CrossRefPubMedGoogle Scholar
  91. Tarry-Adkins, J. L. and Ozanne, S. E., “Mechanisms of early life programming: current knowledge and future directions,” Am. J. Clin. Nutr., 94, No. 6, Supplement, 1765S–1771S (2011).Google Scholar
  92. Velíšek L., “Prenatal corticosteroid exposure alters early developmental seizures and behavior,” Epilepsy Res., 95, No. 1–2, 9–19 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wang, H. and Gondre-Lewis, M. C., “Prenatal nicotine and maternal deprivation stress de-regulate the development of CAL CA3, and dentate, gyrus neurons in hippocampus of infant rats,” PLoS One, 8, No. 6, e65517 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wang, X. D., Laivimaier, C., Holsboer, E., et al., “Early-life stress-induced anxiety-related behavior in adult mice partially requires forebrain corticotropin-releasing hormone receptor 1,” Eur. J. Neurosci., 36, No. 3, 2360–2367 (2012).CrossRefPubMedGoogle Scholar
  95. Wolff, A. R. and Bilkey, D. K., “Immune activation during mid-gestation disrupts sensorimotor gating in rat offspring,” Behav. Brain Res., 190, No. 1, 156–159 (2008).CrossRefPubMedGoogle Scholar
  96. Yauzina, N. A., Cherepanov, S. M., Komleva, Yu. K., et al., “The effects of early life stress on behavior, neurogenesis, and apoptosis of brain cells in rats,” Sib. Med. Obozr., No. 5, 3–10 (2013b).Google Scholar
  97. Yauzina, N. A., Komleva, Yu. K., Salmina, A. B., et al., “Current experimental models of depression,” Biomeditsina, No. 1, 61–71 (2013a).Google Scholar
  98. Young, N. A., Teskey, G. C., Henry, L. C., and Edwards, H. E., “Exogenous antenatal glucocorticoid treatment reduces susceptibility for hippocampal kindled and maximal electroconvulsive seizures in infant rats,” Exp. Neurol., 198, No. 2, 303–312 (2006).CrossRefPubMedGoogle Scholar
  99. Yum, M. S., Chachua, T., Velíšková, J., and Velíšek, L., “Prenatal stress promotes development of spasms in infant rats,” Epilepsia, 53, No. 3, e46–e49 (2012).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. A. Malinovskaya
    • 1
  • A. V. Morgun
    • 1
  • O. L. Lopatina
    • 1
  • Yu. A. Panina
    • 1
  • V. V. Volkova
    • 1
  • E. L. Gasymly
    • 1
  • T. E. Taranushenko
    • 1
  • A. B. Salmina
    • 1
  1. 1.Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry with Teaching in Medical, Pharmaceutical, and Toxicological ChemistryKrasnoyarsk State Medical University, Ministry of Health of the Russian FederationKrasnoyarskRussia

Personalised recommendations