Functional Interaction between the Dopamine and Melanocortin Systems of the Brain

Article
  • 7 Downloads

The melanocortin system of the brain plays a key role in regulating energy metabolism and feeding behavior and is involved in forming memories; impairments to this sytem lead to metabolic disorders and cognitive deficit. The dopamine system of the brain controls motor activity and the functions of the nervous, endocrine, and cardiovascular systems, and is also involved in regulating peripheral metabolism and feeding behavior, as well as generating the effects of rewards and reinforcements. The fact that many major physiological functions are regulated by the melanocortin and dopamine systems points to tight functional interactions between them in various brain structures. These interactions are based on the colocalization of components of the melanocortin and dopamine signal systems in neurons and on interactions between them, supporting crosstalk between the melanocortin and dopamine pathways in the CNS. This review provides a wide-ranging analysis of our current understanding of the interaction between the melanocortin and dopamine systems of the brain at both the structural and functional levels.

Keywords

melanocortin system dopamine system dopamine melanocortin receptor hypothalamus brain feeding behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Mikhrina and I. V. Romanova, “The role of AGRP in regulating dopaminergic neurons in the brain,” Ros. Fiziol. Zh., 99 No. 9, 1036–10434 (2013).Google Scholar
  2. 2.
    G. A. Oganesyan, E. A. Aristakesyan, V. A. Belova, et al., “The dopaminergic nigrostriatal system in conditions of sleep deprivation in rats,” Ros. Fiziol. Zh., 93, No. 12, 1344–1354 (2007).Google Scholar
  3. 3.
    I. V. Romanova and A. L. Mikhrina, “Involvement of agouti gene-related peptide in the mechanisms regulating the sleep-waking cycle,” Fiziol. Cheloveka, 39, No. 6, 24–30 (2013).PubMedGoogle Scholar
  4. 4.
    I. V. Romanova, A. L. Mikhrina, and M. P. Chernysheva, “Analysis of the establishment of morphofunctional interactions between CART and AGRP with dopaminergic neurons in ontogeny in mammals,” Zh. Evolyuts. Biokhim. Fiziol., 50, No. 5, 392–398 (2014).Google Scholar
  5. 5.
    M. V. Ugryumov, Mechanisms of Neuroendocrine Regulation, Nauka, Moscow (1999).Google Scholar
  6. 6.
    P. D. Shabanov, A. A. Lebedev, and Sh. K. Meshcherov, Dopamine and the Reinforcement Systems of the Brain, Lan’, St. Petersburg (2002), pp. 25–32.Google Scholar
  7. 7.
    A. O. Shpakov and K. V. Derkach, The Hormonal Systems of the Brain and Type 2 Diabetes Mellitus, Polytechnical University Press, St. Petersburg (2015).Google Scholar
  8. 8.
    A. O. Shpakov and K. V. Derkach, “The melanocortin system of the hypothalamus and its functional state in type 2 diabetes mellitus and metabolic syndrome,” Ros. Fiziol. Zh., 102, No. 1, 18–40 (2016).Google Scholar
  9. 9.
    A. O. Shpakov, K. V. Derkach, and I. B. Sukhov, “The dopamine signal system of the brain in type 2 diabetes mellitus and metabolic syndrome,” Tsitologiya, 58, No. 3, 167–177 (2016).Google Scholar
  10. 10.
    A. Albanese, M. C. Altavista, and P. Rossi, “Organization of central nervous system dopaminergic pathways,” J. Neural Transm., 22, Supplement, 3–17 (1986).Google Scholar
  11. 11.
    J. D. Alvaro, J. B. Tatro, J. M. Quillan, et al., “Morphine down-regulates melanocortin-4 receptor expression in brain regions that mediate opiate addiction,” Mol. Pharmacol., 50, No. 3, 583–591 (1996).PubMedGoogle Scholar
  12. 12.
    D. Bagnol, X. Y. Lu, C. B. Kaelin, et al., “Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain,” J. Neurosci., 19, No. 18, RC26 (1999).PubMedGoogle Scholar
  13. 13.
    J. Bakos, M. Zatkova, Z. Bacova, and D. Ostatnikova, “The role of hypothalamic neuropeptides in neurogenesis and neuritogenesis,” Neural Plasticity, Art. 3276383 (2016).Google Scholar
  14. 14.
    C. E. Barrett, M. E. Modi, B. C. Zhang, et al., “Neonatal melanocortin receptor agonist treatment reduces play fighting and promotes adult attachment in prairie voles in a sex-dependent manner,” Neuropharmacology, 85, 357–366 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    N. Ben-Jonathan, M. Laudon, and P. A. Garris, “Novel aspects of posterior pituitary function: regulation of prolactin secretion,” Front. Neuroendocrinology, 12, No. 3, 231–277 (1991).Google Scholar
  16. 16.
    A. Björlund and O. Lindvall, “Dopamine-containing system in the CNS,” in: Handbook of Chemical Neuroanatomy: Classical Neurotransmitters in the CNS, Elsevier, Amsterdam (1984), Pt. I, No. 2, pp. 55–122.Google Scholar
  17. 17.
    R. D. Cone, “Anatomy and regulation of the central melanocortin system,” Nat. Neurosci., 8, No. 5, 571–578 (2005).CrossRefPubMedGoogle Scholar
  18. 18.
    H. Cui and M. Lutter, “The expression of MC4Rs in DIR neurons regulates food intake and locomotor sensitization to cocaine,” Genes Brain Behav., 12, No. 6, 658–665 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    H. Cui, B. L. Mason, C. Lee, et al., “Melanocortin 4 receptor signaling in dopamine 1 receptor neurons is required for procedural memory learning,” Physiol. Behav., 106, No. 2, 201–210 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    H. Cui, J. W. Sohn, L. Gautron, et al., “Neuroanatomy of melanocortin-4 receptor pathway in the lateral hypothalamic area,” J. Comp. Neurol., 520, No. 18, 4168–4183 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    A. Dubois, M. Savasta, O. Curet, and B. Scatton, “Autoradiographic distribution of the D1 agonist [3H]SKF 38393, in the rat brain and spinal cord. Comparison with the distribution of D2 dopamine receptors,” Neuroscience, 19, No. 1, 125–137 (1986).CrossRefPubMedGoogle Scholar
  22. 22.
    C. Egles, F. Rene, S. Varon, et al., “Differentiation of rat hypothalamic dopaminergic neurons is stimulated in vitro by target cells: the melanotrophs,” Eur. J. Neurosci., 10, No. 4, 1270–1281 (1998).CrossRefPubMedGoogle Scholar
  23. 23.
    H. L. Fields, G. O. Hjelmstad, E. B. Margolis, and S. M. Nicola, “Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement,” Annu. Rev. Neurosci., 30, 289–316 (2007).CrossRefPubMedGoogle Scholar
  24. 24.
    R. Franco, E. Martinez-Pinilla, J. L. Lanciego, and G. Navarro, “Basic pharmacological and structural evidence for class A G-protein-coupled receptor heteromerization,” Front. Pharmacol., 7, 76 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    L. Garcia-Tornadú, G. Díaz-Torga, G. S. Risso, et al., “Hypothalamic orexin, OX1, αMSH, NPY and MCRs expression in dopaminergic D2R knockout mice,” Neuropeptides, 43, No. 4, 267–274 (2009).CrossRefPubMedGoogle Scholar
  26. 26.
    H. Gelez, S. Poirier, P. Facchinetti, et al., “Neuroanatomical distribution of the melanocortin-4 receptors in male and female rodent brain,” J. Chem. Neuroanat., 40, No. 4, 310–324 (2010).CrossRefPubMedGoogle Scholar
  27. 27.
    Y. Hao, X. B. Tian, T. T. Liu, et al., “MC4R expression in pedunculopontine nucleus involved in the modulation of midbrain dopamine system,” Int. J. Clin. Exp. Pathol., 8, No. 2, 2039–2043 (2015).PubMedPubMedCentralGoogle Scholar
  28. 28.
    Z. G. He, B. W. Liu, and H. B. Xiang, “Cross interaction of melanocortinergic and dopaminergic systems in neural modulation,” Int. J. Physiol. Pathophysiol. Pharmacol., 7, No. 3, 152–157 (2015).PubMedPubMedCentralGoogle Scholar
  29. 29.
    D. Jackson and A. Westlind-Danielsson, “Dopamine receptors: molecular biology, biochemistry and behavioural aspects,” Pharmacol. Ther., 64, No. 2, 291–370 (1994).CrossRefPubMedGoogle Scholar
  30. 30.
    P. Jourdain, B. Dupouy, R. Bonhomme, et al., “Visualization of local afferent inputs to magnocellular oxytocin neurons in vitro,” Eur. J. Neurosci., 11, 1960–1972 (1999).CrossRefPubMedGoogle Scholar
  31. 31.
    M. O. Kim, Y. K. Lee, W. S. Choi, et al., “Prolonged ethanol intake increases D2 dopamine receptor expression in the rat brain,” Mol. Cells, 7, No. 5, 682–687 (1997).PubMedGoogle Scholar
  32. 32.
    T. Kishi, C. J. Aschkenasi, C. E. Lee, et al., “Expression of melanocortin-4 receptor mRNA in the central nervous system of the rat,” J. Comp. Neurol., 457, 213–235 (2003).CrossRefPubMedGoogle Scholar
  33. 33.
    H. Krude and A. Gruters, “Implications of proopiomelanocortin (POMC) mutations in human: the POMC deficiency syndrome,” Trends Endocrinol. Metab., 11, No. 1, 15–22 (2000).CrossRefPubMedGoogle Scholar
  34. 34.
    B. K. Lim, K. W. Huang, B. A. Grueter, et al., Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens,” Nature, 487, No. 7406, 183–189 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    J. Lindblom, A. Kask, E. Hagg, et al., “Chronic infusion of a melanocortin receptor agonist modulates dopamine receptor binding in the rat brain,” Pharmacol. Res., 45, No. 2, 119–124 (2002).CrossRefPubMedGoogle Scholar
  36. 36.
    J. Lindblom, B. Opmane, F. Mutulis, et al., “The MC4 receptor mediates alpha-MSH induced release of nucleus accumbens dopamine,” Neuroreport, 12, No. 10, 2155–2158 (2001).CrossRefPubMedGoogle Scholar
  37. 37.
    R. N. Lippert, K. L. J. Ellacott, and R. D. Cone, “Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice,” Endocrinology, 155, No. 5, 1718–1727 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    H. Liu, T. Kishi, A. G. Roseberry, et al., “Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter,” J. Neurosci., 23, No. 18, 7143–7154 (2003).PubMedGoogle Scholar
  39. 39.
    A. H. Luo, P. Tahsili-Fahadan, R. A. Wise, et al., “Linking context with reward: a functional circuit from hippocampal CA3 to ventral tegmental area,” Science, 333, No. 6040, 353–357 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    G. W. Millington, “The role of proopiomelanocortin (POMC) neurons in feeding behavior,” Nutr. Metab. (Lond.), 4, 18 (2007).Google Scholar
  41. 41.
    J. Monti, and D. Monti, “The involvement of dopamine in the modulation sleep and waking,” Sleep Med. Rev., 11, No. 2, 113–133 (2007).CrossRefPubMedGoogle Scholar
  42. 42.
    K. E. Moore and K. J. Lookingland, “Dopaminergic neuronal systems in the hypothalamus,” in: Psychoneuropharmacology: The Fifth Generation of Progress, Raven Press, New York (2000), www.acnp.org.
  43. 43.
    M. Morales and D. H. Root, “Glutamate neurons within the midbrain dopamine regions,” Neuroscience, 282, 60–68 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    K. G. Mountjoy, “Distribution and function of melanocortin receptors within the brain,” Adv. Exp. Med. Biol., 681, 29–48 (2010).CrossRefPubMedGoogle Scholar
  45. 45.
    J. Nguyen-Legros, “Functional neuroarchitecture of the retina: hypothesis on the dysfunction of retinal dopaminergic circuitry in Parkinson’s disease,” Surg. Radiol. Anat., 10, No. 2, 137–144 (1988).CrossRefPubMedGoogle Scholar
  46. 46.
    R. D. Oades, and G. M. Halliday, “Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity,” Brain Res., 434, No. 2, 117–165 (1987).CrossRefPubMedGoogle Scholar
  47. 47.
    J. J. Olney, M. Navarro, and T. E. Thiele, “Targeting central melanocortin receptors: a promising novel approach for treating alcohol abuse disorders,” Front. Neurosci. Neuropharmacol., 8, 128 (2014).Google Scholar
  48. 48.
    R. Pandit, A. Omrani, M. C. Luijendijk, et al., “Melanocortin 3 receptor signaling in midbrain dopamine neurons increases the motivation for food reward,” Neuropsychopharmacology, 41, No. 9, 2241–2251 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    R. Pandit, E. M. van der Zwaal, M. C. Luijendijk, et al., “Central melanocortins regulate the motivation for sucrose reward,” PLoS One, 10, No. 3, e0121768 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    M. L. Perreault, M. Y. Shen, T. Fan, and S. R. George, “Regulation of c-fos expression by the dopamine D1-D2 receptor heteromer,” Neuroscience, 285, 194–203 (2015).CrossRefPubMedGoogle Scholar
  51. 51.
    M. L. Raffin-Sanson, B. A. Eipper, R. E. Mains, et al., “Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions,” Eur. J. Endocrinol., 149, No. 2, 79–90 (2003).CrossRefPubMedGoogle Scholar
  52. 52.
    A. G. Roseberry, “Altered feeding and body weight following melanocortin administration to the ventral tegmental area in adult rats,” Psychopharmacology (Berl.), 226, No. 1, 25–34 (2013).CrossRefGoogle Scholar
  53. 53.
    A. G. Roseberry, K. Stuhrman, and A. I. Dunigan, “Regulation of the mesocorticolimbic and mesostriatal dopamine systems by α-melanocyte stimulating hormone and agouti-related protein,” Neurosci. Biobehav. Rev., 56, 15–25 (2015).CrossRefPubMedGoogle Scholar
  54. 54.
    L. Roselli-Rehfus, K. G. Mountjoy, L. S. Robbins, et al., “Identification of a receptor for γ-melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system,” Proc. Natl. Acad. Sci. USA Neurobiology, 90, 8856–8860 (1993).CrossRefGoogle Scholar
  55. 55.
    S. Saino-Saito, H. Sasaki, B. T. Volpe, et al., “Differentiation of the dopaminergic phenotype in the olfactory system of neonatal and adult mice,” J. Comp. Neurol., 479, No. 4, 389–398 (2004).CrossRefPubMedGoogle Scholar
  56. 56.
    J. E. Siljee, U. A. Unmehopa, A. Kalsbeek, et al., “Melanocortin 4 receptor distribution in the human hypothalamus,” Eur. J. Endocrinol., 168, No. 3, 361–369 (2013).CrossRefPubMedGoogle Scholar
  57. 57.
    W. J. A. J. Smeets, O. Marin, and A. Gonzales, “Evolution of the basal ganglia: new perspectives through a comparative approach,” J. Anat., 196, 501–517 (2000).CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    K. Starowicz and B. Przewlocka, “The role of melanocortins and their receptors in inflammatory processes, nerve regeneration and nociception,” Life Sci., 73, 823–847 (2003).CrossRefPubMedGoogle Scholar
  59. 59.
    M. J. Thomas and R. C. Malenka, “Synaptic plasticity in the mesolimbic dopamine system,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 358, 815–819 (2003).CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    N. D. Volkow, G. J. Wang, and R. D. Baler, “Reward, dopamine and the control of food intake: implications for obesity,” Trends Cogn. Sci., 15, 37–46 (2011).CrossRefPubMedGoogle Scholar
  61. 61.
    D. Wang, X. He, Z. Zhao, et al., “Whole-brain mapping of the direct inputs and axonal projections of POMC and AGRP neurons,” Front. Neuroanat., 9, 40 (2015).PubMedPubMedCentralGoogle Scholar
  62. 62.
    H. H. Yen and A. G. Roseberry, “Decreased consumption of rewarding sucrose solutions after injection of melanocortins into the ventral tegmental area of rats,” Psychopharmacology (Berlin), 232, 285–294 (2015).CrossRefGoogle Scholar
  63. 63.
    Y. R. Yoon and J. H. Baik, “Melanocortin-4 receptor and dopamine D2 receptor expression in brain areas involved in food intake,” Endocrinol. Metabolism. (Seoul), 30, No. 4, 576–583 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. V. Derkach
    • 1
  • I. V. Romanova
    • 1
  • A. O. Shpakov
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations