Skip to main content
Log in

Effects of Conditioned Reflex Retraining Regime on Search Behavior in a Radial Maze in Rats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Experiments on rats showed that sessions of retraining to find a new preferred reinforcement location in a radial maze, continuously repeated on the experimental day, led to impairment of the animals’ ability to use navigational orientation as the most adaptive tactic for maximizing reinforcement, with retention of less productive conditioned reflex responding to the presentation of signals within the maze. Some series of experiments showed that sleep had an adaptive role, including sleep induced by somnogenic neuropeptides, and was needed for the experimental animals to perform the behavioral task successfully in conditions of heightened emotional tension and to prevent any possible neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Al’bertin, “Involvement of the nucleus accumbens in forming spatial selection responses in rats in a radial maze,” Ros. Fiziol. Zh., 88, No. 5, 545–552 (2002).

    Google Scholar 

  2. S. V. Albertin and S. I. Wiener, “Neuronal activity of the nucleus accumbens and hippocampus in rats on formation of seeking behavior in a radial maze,” Byull. Eksperim. Biol. Med., 158, No. 10, 400–406 (2014).

    Google Scholar 

  3. S. V. Albertin, “Diagnosis of attention deficit hyperactivity syndrome,” Zh. Nevrol. Psikhiat., No. 12, 67–73 (2010).

  4. M. M. Bogoslovskii and S. V. Al’bertin, “Effects of emotional stress on the nature of sleep in cats,” Zh. Vyssh. Nerv. Deyat., 29, No. 3, 557–565 (1979).

    Google Scholar 

  5. I. G. Karmanov, V. F. Maksimuk, I. B. Borisov, et al., “Analysis of the actions of delta sleep-inducing peptide in cats and white mice,” Zh. Evolyuts. Biokhim. Fiziol., 15, No. 6, 583–589 (1979).

    Google Scholar 

  6. M. M. Khananashvili, “Biologically positive and negative psychogenic (informational) stress,” in: Dysregulatory Pathology, Meditsina, Moscow (2002).

  7. S. V. Albertin, A. B. Mulder, E. Tabuchi, et al., “Lesions of the medial shell of nucleus accumbens impair rats in finding larger rewards, but spare reward seeking behavior,” Behav. Brain Res., 117, 173–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. S. V. Albertin, R. Shibata, E. Tabichi, et al., “Functional properties of nucleus accumbens neurons in zones receiving hippocampal or prefrontal cortical inputs: The Spatial and Behavioral Correlates,” in: Proc. 2nd Int. Conf. on Cognitive Sciences, St. Petersburg (2006), pp. 151–152.

  9. R. A. Butts, S. B. Floresco, and A. G. Phillips, “Acute stress impairs set-shifting but not reversal learning,” Behav. Brain Res., 252, 222–229 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. D. J. Cai, T. Shuman, M. R. Gorman, et al., “Sleep selectively enhances hippocampus-dependent memory in mice,” Behav. Neurosci., 123, No. 4, 713–719 (2009).

    Article  PubMed  Google Scholar 

  11. C. Cirelli, C. M. Gutierrez, and G. Tononi, “Extensive and divergent effects of sleep and wakefulness on brain gene expression,” Neuron, 41, 35–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. L. A. Finelli, H. Baumann, A. A. Borbely, and P. Achermann, “Dual electroencephalogram markers of human sleep. Homeostatic correlation between theta activity in waking and slow-wave activity in sleep,” Neuroscience, 101,523–529 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. L. S. Gellerman, “Chance orders of alternating stimuli in visual discrimination experiments,” Gen. Psychol., 42, 206 (1933).

    Google Scholar 

  14. D. M. Haluk and S. B. Floresco, “Ventral striatal dopamine modulation of different forms of behavioral flexibility,” Neuropsychopharmacology, 34, 2041–2052 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. R. Ito, T. W. Robbins, C. M. Pennartz, and B. J. Everitt, “Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning,” J. Neurosci., 28, 6950–6959 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Klanker, M. Feenstra, and D. Denys, “Dopaminergic control of cognitive flexibility in humans and animals,” Front. Neurosci., Art. 201 (2013), doi: https://doi.org/10.3389/fnins.2013.00201.

  17. B. A. Kuhl, A. T. Shah, S. DuBrow, and A. D. Wagner, “Resistance to forgetting associated with hippocampus-mediated reactivation during new learning,” Nat. Neurosci., 13, 501–506 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. C. S. Lansink, P. M. Golstein, I. V. Lankehna, et al., “Hippocampus leads ventral striatum in replay of place-reward information,” PLoS Biol., 7, el000173 (2009).

    Article  Google Scholar 

  19. M. D. Lapiz-Bluhm, A. E. Soto-Pina, J. G. Hensler, and D. A. Morilak, “Chronic intermittent cold stress and serotonin depletion induce deficits of reversal learning in an attentional set-shifting test in rats,” Psychopharmacology (Berl.), 202, 329–341 (2009).

    Article  CAS  Google Scholar 

  20. Z. W. Liu, U. Faraguna, C. Cirelli, et al., “Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex,” J. Neurosci., 23, 8671–8675 (2010).

    Article  Google Scholar 

  21. L. Marshal and J. Born, “The contribution of sleep to hippocampus-dependent memory consolidation,” Trends Cogn. Sci., 11, No. 10, 442–450 (2007).

    Article  Google Scholar 

  22. C. M. Pennartz, E. Lee, J. Verheul, et al., “The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples,” J. Neurosci., 24, 6446–6456 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. C. A. Thai, Y. Zhang, and J. G. Howland, “Effects of acute restraint stress on set-shifting and reversal learning in male rats,” Cogn. Affect. Behav. Neurosci., 13, No. 1, 164–173 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. G. Tononi and C. Cirelli, “Sleep function and synaptic homeostasis,” Sleep Med. Rev, 10, 49–62 (2006).

    Article  PubMed  Google Scholar 

  25. S. I. Wiener, R. Shibata, E. Tabuchi, et al., “Spatial and behavioral correlates in nucleus accumbens neurons in zones receiving hippocampal or prefrontal cortical inputs,” Intern. Congr. Ser. Amsterdam Excerpta Med., 1250, 275–292 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Al’bertin.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 102, No. 11, pp. 1302–1311, November, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al’bertin, S.V. Effects of Conditioned Reflex Retraining Regime on Search Behavior in a Radial Maze in Rats. Neurosci Behav Physi 48, 207–212 (2018). https://doi.org/10.1007/s11055-018-0553-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0553-0

Keywords

Navigation