Effects of Conditioned Reflex Retraining Regime on Search Behavior in a Radial Maze in Rats

Article
  • 2 Downloads

Experiments on rats showed that sessions of retraining to find a new preferred reinforcement location in a radial maze, continuously repeated on the experimental day, led to impairment of the animals’ ability to use navigational orientation as the most adaptive tactic for maximizing reinforcement, with retention of less productive conditioned reflex responding to the presentation of signals within the maze. Some series of experiments showed that sleep had an adaptive role, including sleep induced by somnogenic neuropeptides, and was needed for the experimental animals to perform the behavioral task successfully in conditions of heightened emotional tension and to prevent any possible neurological disorders.

Keywords

spatial orientation retraining adaptive functions of sleep 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Al’bertin, “Involvement of the nucleus accumbens in forming spatial selection responses in rats in a radial maze,” Ros. Fiziol. Zh., 88, No. 5, 545–552 (2002).Google Scholar
  2. 2.
    S. V. Albertin and S. I. Wiener, “Neuronal activity of the nucleus accumbens and hippocampus in rats on formation of seeking behavior in a radial maze,” Byull. Eksperim. Biol. Med., 158, No. 10, 400–406 (2014).Google Scholar
  3. 3.
    S. V. Albertin, “Diagnosis of attention deficit hyperactivity syndrome,” Zh. Nevrol. Psikhiat., No. 12, 67–73 (2010).Google Scholar
  4. 4.
    M. M. Bogoslovskii and S. V. Al’bertin, “Effects of emotional stress on the nature of sleep in cats,” Zh. Vyssh. Nerv. Deyat., 29, No. 3, 557–565 (1979).Google Scholar
  5. 5.
    I. G. Karmanov, V. F. Maksimuk, I. B. Borisov, et al., “Analysis of the actions of delta sleep-inducing peptide in cats and white mice,” Zh. Evolyuts. Biokhim. Fiziol., 15, No. 6, 583–589 (1979).Google Scholar
  6. 6.
    M. M. Khananashvili, “Biologically positive and negative psychogenic (informational) stress,” in: Dysregulatory Pathology, Meditsina, Moscow (2002).Google Scholar
  7. 7.
    S. V. Albertin, A. B. Mulder, E. Tabuchi, et al., “Lesions of the medial shell of nucleus accumbens impair rats in finding larger rewards, but spare reward seeking behavior,” Behav. Brain Res., 117, 173–183 (2000).CrossRefPubMedGoogle Scholar
  8. 8.
    S. V. Albertin, R. Shibata, E. Tabichi, et al., “Functional properties of nucleus accumbens neurons in zones receiving hippocampal or prefrontal cortical inputs: The Spatial and Behavioral Correlates,” in: Proc. 2nd Int. Conf. on Cognitive Sciences, St. Petersburg (2006), pp. 151–152.Google Scholar
  9. 9.
    R. A. Butts, S. B. Floresco, and A. G. Phillips, “Acute stress impairs set-shifting but not reversal learning,” Behav. Brain Res., 252, 222–229 (2013).CrossRefPubMedGoogle Scholar
  10. 10.
    D. J. Cai, T. Shuman, M. R. Gorman, et al., “Sleep selectively enhances hippocampus-dependent memory in mice,” Behav. Neurosci., 123, No. 4, 713–719 (2009).CrossRefPubMedGoogle Scholar
  11. 11.
    C. Cirelli, C. M. Gutierrez, and G. Tononi, “Extensive and divergent effects of sleep and wakefulness on brain gene expression,” Neuron, 41, 35–43 (2004).CrossRefPubMedGoogle Scholar
  12. 12.
    L. A. Finelli, H. Baumann, A. A. Borbely, and P. Achermann, “Dual electroencephalogram markers of human sleep. Homeostatic correlation between theta activity in waking and slow-wave activity in sleep,” Neuroscience, 101,523–529 (2000).CrossRefPubMedGoogle Scholar
  13. 13.
    L. S. Gellerman, “Chance orders of alternating stimuli in visual discrimination experiments,” Gen. Psychol., 42, 206 (1933).Google Scholar
  14. 14.
    D. M. Haluk and S. B. Floresco, “Ventral striatal dopamine modulation of different forms of behavioral flexibility,” Neuropsychopharmacology, 34, 2041–2052 (2009).CrossRefPubMedGoogle Scholar
  15. 15.
    R. Ito, T. W. Robbins, C. M. Pennartz, and B. J. Everitt, “Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning,” J. Neurosci., 28, 6950–6959 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    M. Klanker, M. Feenstra, and D. Denys, “Dopaminergic control of cognitive flexibility in humans and animals,” Front. Neurosci., Art. 201 (2013), doi:  https://doi.org/10.3389/fnins.2013.00201.
  17. 17.
    B. A. Kuhl, A. T. Shah, S. DuBrow, and A. D. Wagner, “Resistance to forgetting associated with hippocampus-mediated reactivation during new learning,” Nat. Neurosci., 13, 501–506 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    C. S. Lansink, P. M. Golstein, I. V. Lankehna, et al., “Hippocampus leads ventral striatum in replay of place-reward information,” PLoS Biol., 7, el000173 (2009).CrossRefGoogle Scholar
  19. 19.
    M. D. Lapiz-Bluhm, A. E. Soto-Pina, J. G. Hensler, and D. A. Morilak, “Chronic intermittent cold stress and serotonin depletion induce deficits of reversal learning in an attentional set-shifting test in rats,” Psychopharmacology (Berl.), 202, 329–341 (2009).CrossRefGoogle Scholar
  20. 20.
    Z. W. Liu, U. Faraguna, C. Cirelli, et al., “Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex,” J. Neurosci., 23, 8671–8675 (2010).CrossRefGoogle Scholar
  21. 21.
    L. Marshal and J. Born, “The contribution of sleep to hippocampus-dependent memory consolidation,” Trends Cogn. Sci., 11, No. 10, 442–450 (2007).CrossRefGoogle Scholar
  22. 22.
    C. M. Pennartz, E. Lee, J. Verheul, et al., “The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples,” J. Neurosci., 24, 6446–6456 (2004).CrossRefPubMedGoogle Scholar
  23. 23.
    C. A. Thai, Y. Zhang, and J. G. Howland, “Effects of acute restraint stress on set-shifting and reversal learning in male rats,” Cogn. Affect. Behav. Neurosci., 13, No. 1, 164–173 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    G. Tononi and C. Cirelli, “Sleep function and synaptic homeostasis,” Sleep Med. Rev, 10, 49–62 (2006).CrossRefPubMedGoogle Scholar
  25. 25.
    S. I. Wiener, R. Shibata, E. Tabuchi, et al., “Spatial and behavioral correlates in nucleus accumbens neurons in zones receiving hippocampal or prefrontal cortical inputs,” Intern. Congr. Ser. Amsterdam Excerpta Med., 1250, 275–292 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations