Involvement of the Nitrergic System of the Prefrontal Cortex in Regulating the Expression of Fear Evoked by Contextual Danger Signals

Article
  • 2 Downloads

Vital intracerebral microdialysis studies in Sprague–Dawley rats showed that placing the animal in a conditioned reflex chamber in which a conditioned reflex fear response to a sound signal (combination of a tone and an unavoidable electric shock) had previously been acquired led to an increase in the extracellular citrulline (a coproduct of NO synthesis) level in the medial prefrontal cortex and induced freezing of the animal (an expression of fear). This increase was not seen in animals of the control group (same procedure, but without pain stimulation) and it was prevented by administration of the neuronal NO synthase inhibitor Nω-propyl-L-arginine (1 mM) into the medial prefrontal cortex. Administration of this substance decreased freezing induced by being placed in the conditioned reflex chamber without any effect on the rats’ mobility. These data provide evidence of the involvement of the nitrergic system of the medial prefrontal cortex in regulating the expression of fear induced by contextual danger signals.

Keywords

citrulline nitric oxide medial prefrontal cortex vital intracerebral microdialysis contextual danger signals conditioned reflex fear 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Savel’ev, N. S. Repkina, and N. B. Saul’skaya, “A sensitive method for assaying citrulline for vital monitoring of nitric oxide production in the CNS,” Ros. Fiziol. Zh., 91, No. 5, 587–591 (2005).Google Scholar
  2. 2.
    N. B. Saul’skaya and P. V. Sudorgina, “Activity of the nitrergic system of the medial prefrontal cortex with high and low levels of generalization of a conditioned reflex fear reaction,” Zh. Vyssh. Nerv. Deyat., 65, No. 3, 372–381 (2015).Google Scholar
  3. 3.
    P. V. Sudorgina and N. B. Saul’skaya, “Sound danger signals activate the nitrergic system of the medial prefrontal cortex,” Ros. Fiziol. Zh., 101, No. 7, 778–788 (2015).Google Scholar
  4. 4.
    A. Burgos-Robles, I. Vidal-Gonzalez, and G. J. Quirk, “Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure,” J. Neurosci., 29, No. 26, 8474–8482 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    J. Courtin, T. C. M. Bienvenu, E. O. Einarsson, and C. Herry, “Medial prefrontal cortex neuronal circuits in fear behavior,” Neuroscience, 240, 219–242 (2013).CrossRefPubMedGoogle Scholar
  6. 6.
    M. S. Fanselow, “Contextual fear, gestalt memories, and the hippocampus,” Behav. Brain Res., 110, No. 1, 73–81 (2000).CrossRefPubMedGoogle Scholar
  7. 7.
    P. L. Gabott and S. J. Bacon, “Co-localisation of NADPH diaphorase and GABA immunoreactivity in local circuit neurons in the medial prefrontal cortex (mPFC) of the rat,” Brain Res., 699, No. 2, 321–328 (1995).CrossRefGoogle Scholar
  8. 8.
    J. Garthwaite, “Glutamate, nitric oxide and cell-cell signaling in the nervous system,” Trends Neurosci., 14, No. 1, 60–67 (1991).CrossRefPubMedGoogle Scholar
  9. 9.
    M. R. Gilmartin, N. L. Balderston, and F. J. Helmstetter, “Prefrontal cortical regulation of fear learning,” Trends Neurosci., 37, No. 8, 455–464 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    M. R. Gilmartin and F. J. Helmstetter, “Trace and contextual fear conditioning require neural activity and NMDA receptor-dependent transmission in the medial prefrontal cortex,” Learn. Mem., 17, No. 6, 289–296 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    C. C. Huang and K. S. Hsu, “Activation of muscarinic acetylcholine receptors induces a nitric oxide-dependent long-term depression in rat medial prefrontal cortex,” Cereb. Cortex, 20, No. 4, 982–996 (2010).CrossRefPubMedGoogle Scholar
  12. 12.
    J. J. Kim and W. J. Jung, “Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review,” Neurosci. Biobehav. Rev., 30, No. 2, 188–202 (2006).CrossRefPubMedGoogle Scholar
  13. 13.
    E. J. Kim, N. Kim, H. T. Kim, and J.-C. Choi, “The prelimbic cortex is critical for context-dependent fear expression,” Front. Behav. Neurosci., 7, 73 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    J. E. LeDouxe, “Emotional circuits in the brain,” Annu. Rev. Neurosci., 23, 155–184 (2000).CrossRefGoogle Scholar
  15. 15.
    Y. Lu, K. L. Simpson, K. J. Weaver, and R. C. Lin, “Coexpression of serotonin and nitric oxide in the raphe complex: cortical versus subcortical circuit,” Anat. Rec. (Hoboken), 293, No. 11, 1954–1965 (2010).CrossRefGoogle Scholar
  16. 16.
    F. J. Nasif, X. T. Hu, O. A. Ramirez, and M. F. Perez, “Inhibition of neuronal nitric oxide synthase prevents alterations in medial prefrontal cortex excitability induced by repeated cocaine administration,” Psychopharmacology (Berlin), 218, No. 2, 323–330 (2011).Google Scholar
  17. 17.
    M. A. Pezze and J. Feldon, “Mesolimbic dopaminergic pathways in fear conditioning,” Prog. Neurobiol, 74, No. 5, 301–320 (2004).CrossRefPubMedGoogle Scholar
  18. 18.
    E. A. Phelps and J. E. LeDoux, “Contributions of the amygdala to emotion processing: from animal models to human behavior,” Neuron, 48, No. 2, 175–187 (2005).Google Scholar
  19. 19.
    R. G. Phillips and J. E. LeDouxe, “Different contribution of amygdale and hippocampus to cued and contextual fear conditioning,” Behav. Neurosci., 106, No. 2, 274–285 (1992).CrossRefPubMedGoogle Scholar
  20. 20.
    L. B. Resstel, F. M. Correa, and F. S. Guimaraes, “The expression of contextual fear conditioning involves activation of an NMDA receptor-nitric oxide pathway in the medial prefrontal cortex,” Cereb. Cortex, 18, No. 9, 2027–2035 (2008).CrossRefPubMedGoogle Scholar
  21. 21.
    R. R. Rozeske, S. Valerio, F. Chaudun, and C. Herry, “Prefrontal neuronal circuits of contextual fear conditioning,” Genes Brain Behav., 14, No. 1, 22–36 (2015).CrossRefPubMedGoogle Scholar
  22. 22.
    N. B. Saulskaya and N. V. Fofonova, “Effects of N-methyl-D-aspartate on extracellular citrulline level in the rat nucleus accumbens,” Neurosci. Lett., 407, No. 1, 91–95 (2006).CrossRefPubMedGoogle Scholar
  23. 23.
    M. Zelikowsky, S. Bissiere, T. A. Hast, et al., “Prefrontal microcircuit underlies contextual learning alter hippocampal loss,” Proc. Natl. Acad. Sci. USA, 110, No. 24, 9938–9943 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    M. G. Zhao, H. Toyoda, Y. S. Lee, et al., “Roles of NMDA NR2B subtype receptor in long-term potentiation and contextual fear memory,” Neuron, 47, No. 8, 859–872 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Pavlov Institute of Physiology, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations