Skip to main content
Log in

Second Messengers in the Presynaptic Regulation of Glycinergic Synapses in Frog Motoneurons

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The possible pathways mediating the inhibitory influences of two types of presynaptic metabotropic receptors – group III metabotropic glutamate receptors (mGluRIII) and GABAB receptors (GABABR) – on miniature glycinergic activity in motoneurons in the isolated spinal cord of the frog Rana ridibunda were studied. The glycinergic component is dominant in the inhibitory miniature activity of motoneurons [3]. Baclofen and LAP4, which are selective agonists of GABABR and mGluRIII, inhibited miniature glycinergic activity, decreasing frequency by 48.0 ± 5.6 (n = 8) and 48.5 ± 8.6% (n = 5), respectively. The amplitude of miniature potentials did not change significantly, which is evidence for a presynaptic mechanism of modulation of synaptic transmission. Studies of the stages in the mediation of the influences of the metabotropic receptors studied here on the process of glycine release from presynaptic terminals were performed by applying their selective agonists in conditions of previous selective blockade of the components mediating modulation of glycinergic synaptic transmission. The effects of mGluRIII were shown to be mediated tghe feedback via adenylate cyclase (AC), the next stage being mediated by protein kinase A (PKA), as their selective blockade virtually eliminated by effect of activation of mGluRIII. The effects of GABABR on miniature glycinergic activity did not involve AC activity, as its blocker SQ22536 did not alter the inhibitory effect of baclofen. The effects of GABABR were mediated by negative feedback via phospholipase C (PLC), as its prior exclusion (inhibitor U73122) prevented the effect of application of baclofen. However, the next possible stage in this pathway – protein kinase C (PKC) – did not have a role in mediating the influences of GABABR, as the PKC blocker (GF109302X) had no influences on the effect of baclofen. The common component in mediating the effects of mGluRIII and GABABR on miniature glycinergic activity may consist of inositol triphosphate receptors (IP3R), which regulate calcium release from intraterminal depots and, according to published data, are linked with both PKA or cAMP and with PLC. In our experiments, 2-APB, an IP3R antagonist, decreased miniature glycinergic activity frequency by 26 ± 8% (n = 7) and prevented the inhibitory effects of application of both mGluRIII and GABABR agonists. This stage of mediation of the influences of mGluRIII and GABABR appears to involve collision and interaction between these (crosstalk), as demonstrated by our previous studies [2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. P. Veselkin and Yu. V. Natochin, “Principles of the organization and evolution of systems regulating functions,” Zh. Evolyuts. Biokhim. Fiziol., 46, No. 6, 495–503 (2010).

    CAS  Google Scholar 

  2. O. A. Karamyan, Yu. A. Polina, N. M. Chmykhova, and N. P. Veselkin, “Convergence of modulatory influences of presynaptic metabotropic glutamate and GABAB receptors,” Zh. Evolyuts. Biokhim. Fiziol., 47, No. 5, 411–413 (2011).

    Google Scholar 

  3. Yu. A. Polina, D. V. Amakhin, V. M. Kozhanov, et al., “Three types of miniature potentials in frog spinal cord motoneurons: the possibility of comediation of by GABA and glycine,” Ros. Fiziol. Zh., 92, No. 1, 18–26 (2006).

    CAS  Google Scholar 

  4. N. Ankri, P. Legendre, D. S. Faber, and H. Korn, “Automatic detection of spontaneous synaptic responses in central neurons,” J. Neurosci. Meth., 52, No. 1, 87–100 (1994).

    Article  CAS  Google Scholar 

  5. M. J. Berridge, “Neuronal calcium signaling,” Neuron, 21, No. 1, 13–26 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. M. J. Betzenhauser, J. L. Fike, L. E. Wagner, and D. I. Yule, “Protein kinase A increases type-2 inositol 1,4,5-trisphosphate receptor activity by phosphorylation of serine 937,” J. Biol. Chem., 284, No. 37, 25116–25125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. D. Bootman, “Calcium signaling,” Cold Spring Harb. Perspect. Biol., 4, No. 7, a011171 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. D. A. Brown, and T. S. Sihra, “Presynaptic signaling by heterotrimeric G-proteins,” Handb. Exp. Pharmacol., 184, 207–260 (2008).

    Article  CAS  Google Scholar 

  9. H. J. Byrne and E. R. Kandel, “Presynaptic facilitation revisited: State and time dependence,” J. Neurosci., 16, No. 2, 425–435 (1996).

    CAS  PubMed  Google Scholar 

  10. T. Collin, A. Marty, and I. Llano, “Presynaptic calcium stores and synaptic transmission,” Curr. Opin. Neurobiol., 15, 275–281 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Y. Cordeaux and S. I. Hill, “Mechanisms of cross-talk between G-protein-coupled receptors,” Neurosignals, 11, No. 1, 45–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. A. Couve, S. J. Moss, and M. N. Pangalos, “GABAB receptors: a new paradigm in G protein signaling,” Mol. Cell. Neuroscience, 16, No. 4, 296–312 (2000).

    Article  CAS  Google Scholar 

  13. A. Couve, P. Thomas, A. R. Calver, et al., “Cyclic AMP-dependent protein kinase phosphorylation facilitates GABA(B) receptor-effector coupling,” Nat. Neurosci., 5, No. 5, 415–424 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. N. Dale and E. R. Kandel, “Facilitatory and inhibitory transmitters modulate spontaneous transmitter release at cultured Aplysia sensorimotor synapses,” J. Physiol., 421, 203–222 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. N. J. Emptage, C. A. Reid, and A. Fine, “Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release,” Neuron, 29, 197–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. M. Frerking and J. Wondolowski, “Regulation of neurotransmitter release by presynaptic receptors,” in: Molecular Mechanisms of Neurotransmitter Release, Z.-W. Wang (ed.), Humana Press, (2008), pp. 297–314.

  17. S. Hochman, J. Shreckengost, H. Kimura, and J. Quevedo, “Presynaptic inhibition of primary afferents by depolarization: observations supporting nontraditional mechanisms,” Ann. New York Acad. Sci., 1198, 140–152 (2010).

    Article  CAS  Google Scholar 

  18. S. Hugel and R. Schlichter, “Convergent control of synaptic GABA release from rat dorsal horn neurones by adenosine and GABA autoreceptors,” J. Physiol., 551, No. 2, 479–489 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. E.-M. Hur and K.-T. Kim, “G protein-coupled receptor signalling and cross-talk. Achieving rapidity and specificity,” Cell. Signal, 14, No. 5, 397–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. W. Jarolimek and U. Misgeld, “GABAB receptor-mediated inhibition of tetrodotoxin-resistant GABA release in rodent hippocampal CA1 pyramidal cells,” J. Neurosci., 17, No. 3, 1025–1032 (1997).

    CAS  PubMed  Google Scholar 

  21. S. Katsurabayashi, H. Kubota, Z. M. Wang, et al., “cAMP-dependent presynaptic regulation of spontaneous glycinergic IPSCs in mechanically dissociated rat spinal cord neurons,” J. Neurophysiol., 85, No. 1, 332–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. H. Kubota, S. Katsurabayashi, A. J. Moorhouse, et al., “GABAB receptor transduction mechanisms, and cross-talk between protein kinases A and C, in GABAergic terminals synapsing onto neurons of the rat nucleus basalis of Meynert,” J. Physiol., 551, No. 1, 263–276 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. Ladera, M. C. Godino, R. Martin, et al., “The coexistence of multiple receptors in a single nerve terminal provides evidence for pre-synaptic integration,” J. Neurochem., 103, No. 6, 2314–2326 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. I. Llano, J. Gonzalez, C. Caputo, et al., “Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients,” Nat. Neurosci., 3, 1256–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. A. Meir, S. Ginsburg, A. Butkevich, et al., “Ion channels in presynaptic nerve terminals and control of transmitter release,” Physiol. Rev., 70, 1019–1064 (1999).

    Article  Google Scholar 

  26. Z. P. Pang and T. C. Südhoff, “Cell biology of Ca2+-triggered exocytosis,” Curr. Opin. Cell Biol., 22, 496–505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. J. C. Rekling, G. D. Funk, D. A. Bayliss, et al., “Synaptic control of motoneuronal excitability,” Physiol. Rev., 80, No. 2, 767–852 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S. G. Rhee, P. G. Suh, S. H. Ryu, and S. Y. Lee, “Studies of inositol phospholipid-specific phospholipase C,” Science, 244, No. 4904, 546–550 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. P. Rudomin and R. F. Schmidt, “Presynaptic inhibition in the vertebrate spinal cord revisited,” Exp. Brain Res., 129, No. 1, 1–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. S. Seino and T. Shibasaki, “PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis,” Physiol. Rev., 85, No. 4, 1303–1342 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. A. I. Shapovalov, “Amino acids as excitatory and inhibitory neurotransmitters in the spinal cord of lower vertebrates,” in: Neurotransmitters: Comparative Aspects, Akad. Kiado, Budapest (1980), pp. 471–489.

  32. T. D. Werry, G. F. Wilkinson, and G. F. Willars, “Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+,” Biochem. J., 374, 281–296 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Veselkin.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 102, No. 9, pp. 1099–1110, September, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karamyan, O.A., Chmykhova, N.M. & Veselkin, N.P. Second Messengers in the Presynaptic Regulation of Glycinergic Synapses in Frog Motoneurons. Neurosci Behav Physi 48, 166–173 (2018). https://doi.org/10.1007/s11055-018-0547-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0547-y

Keywords

Navigation