Neuroscience and Behavioral Physiology

, Volume 48, Issue 2, pp 157–165 | Cite as

Structural Aspects of the Involvement of the Brainstem Nuclei in the Processing of Functionally Diverse Information Streams Passing through the Basal Ganglia


The structural basis for information processing in the morphofunctional system of the basal ganglia is considered on the basis of analysis of retrograde axonal transport studies of the projections between functionally diverse parts of the brainstem nuclei and functionally diverse segments of basal ganglia structures. The organization of projections between these structures in the dog brain revealed topical elements pointing to the possibility of the segregated transmission of information between the limbic and motor segments of the brainstem nuclei and the corresponding areas of the basal ganglia. However, these projection systems are dominated by convergent transmission of functionally diverse information, providing evidence that information of different modalities may be integrated not solely in the main, but in all the nuclei of the morphofunctional basal ganglia system. Labeled sparsely branched long-axon “reticular” neurons in the brainstem nuclei projecting to the basal ganglia also provide evidence of the integrative function of the nuclei of interest. The possibility that these data could be used to create new models helping us to understand the functioning of the basal ganglia in health and disease is discussed.


basal ganglia zone incerta rostromedial tegmental nucleus deep mesencephalic nucleus peripeduncular nucleus pedunculopontine nucleus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Gorbachevskaya, “Organization of projections from structures in the morphofunctional system of basal ganglia to individual substructures of the deep mesencephalic nucleus in the dog brain,” Morfologiya, 142, No. 6, 10–14 (2012).Google Scholar
  2. 2.
    A. I. Gorbachevskaya, “Organization of the projections of the lateral nuclei of the midbrain tegmentum to the basal ganglia in the dog brain,” Morfologiya, 148, No. 6, 28–33 (2015).Google Scholar
  3. 3.
    A. I. Gorbachevskaya and O. G. Chivileva, “Structural organization of the pedunculopontine nucleus of the midbrain tegmental nuclei in the dog brain,” Morfologiya, 126, No. 5, 11–15 (2004).Google Scholar
  4. 4.
    A. I. Gorbachevskaya and O. G. Chivileva, “Morphofunctional analysis of the pathways conducting information in the basal ganglia in mammals,” Usp. Fiziol. Nauk., 34, No. 2, 46–63 (2003).Google Scholar
  5. 5.
    A. I. Gorbachevskaya and O. G. Chivileva, “Structural organization of the zona incerta of the diencephalon in dogs,” Morfologiya, 128, No. 3, 11–15 (2007).Google Scholar
  6. 6.
    Yu. G. Kratin and T. S. Sotnichenko, The Nonspecific Systems of the Brain, Nauka, Leningrad (1987).Google Scholar
  7. 7.
    K. B. Shapovalova, The Neostriatum and the Regulation of Voluntary Behavior, Nauka, St. Petersburg (2015).Google Scholar
  8. 8.
    V. T. Shuvaev and N. F. Suvorov, The Basal Ganglia and Behavior, Nauka, St. Petersburg (2001).Google Scholar
  9. 9.
    L. Albin, A. B. Young, and B. Penney, “The functional anatomy of basal ganglia disorders,” Trends Neurosci., 12, No. 10, 366–375 (1989).CrossRefPubMedGoogle Scholar
  10. 10.
    G. E. Alexander, M. R. Delong, and P. L. Strick, “Parallel organization of functionally segregated circuits linking basal ganglia and cortex,” Ann. Rev. Neurosci., 9, 357–381 (1986).CrossRefPubMedGoogle Scholar
  11. 11.
    P. Arnault and M. Roger, “The connections of the peripeduncular area studied by retrograde and anterograde transport in the rat,” J. Comp. Neurol., 258, No. 3, 463–476 (1987).CrossRefPubMedGoogle Scholar
  12. 12.
    J. P. Bolam, J. J. Hanley, P. A. C. Boot, and M. D. Bevan, “Synaptic organization of the basal ganglia,” J. Anat., 196, 527–542 (2000).CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    S. Dua-Sharma, K. N. Sharma, and H. L. Jacobs, The Canine Brain in Stereotaxic Coordinates, MIT Press, Cambridge MA, London (1970).Google Scholar
  14. 14.
    S. Galati, E. Scarnati, P. Mazzone, and A. Stefani, “Deep brain stimulation promotes excitation and inhibition in subthalamic nucleus in Parkinson’s disease,” Neuroreport, 19, No. 6, 661–666 (2008).CrossRefPubMedGoogle Scholar
  15. 15.
    S. Geisler and D. S. Zahm, “Afferents of the ventral tegmental area in the rat – anatomical substratum for integrative functions,” J. Comp. Neurol., 490, No. 3, 270–294 (2005).CrossRefPubMedGoogle Scholar
  16. 16.
    H. J. Groenewegen, Y. Galis-de Graaf, and W. J. Smeets, “Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats,” J. Chem. Neuroanat., 16, No. 1, 167–185 (1999).CrossRefPubMedGoogle Scholar
  17. 17.
    S. N. Haber, “Functional anatomy and physiology of the basal ganglia: non-motor functions,” in: Current Clinical Neurology: Deep Brain Stimulation in Neurological and Psychiatric Disorders, D. Tarsy et al. (eds.), Humana Press, Totowa, New York (2008), pp. 33–62.CrossRefGoogle Scholar
  18. 18.
    C. E. Heise and J. Mitrofanis, “Evidence for a glutamatergic projection from the zona incerta to the basal ganglia of rats,” J. Comp. Neurol., 468, No. 3, 482–495 (2004).CrossRefPubMedGoogle Scholar
  19. 19.
    S. Jbabdi, A. Sotiropoulos, and T. E. Behrens, “The topographic connectome,” Curr. Opin. Neurobiol, 23, No. 2, 207–215 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    T. C. Jhou, H. L. Fields, M. G. Baxter, et al., “The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses,” Neuron, 61, No. 3, 786–800 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    J. Jimenez-Castellanos and A. M. Graybiel, “Subdivisions of the dopamine-containing A8-A9-A10 complex identified by their differential mesostriatal innervation of striosomes and extrastriosomal matrix,” Neuroscience, 23, No. 1, 223–242 (1987).CrossRefPubMedGoogle Scholar
  22. 22.
    X. Jin, K. Schwabe, J. K. Kraus, and M. Alam, “The anterior and posterior pedunculopontine tegmental nucleus are involved in behavior and neuronal activity of the cuneiform and entopeduncular nuclei,” Neuroscience, 322, 39–53 (2016).CrossRefPubMedGoogle Scholar
  23. 23.
    D. Joel and I. Weiner, “The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum,” Neuroscience, 96, No. 3, 451–474 (2000).CrossRefPubMedGoogle Scholar
  24. 24.
    W. W. Kaelber and T. B. Smith, “Projections of the zona incerta in the cat, with stimulation controls,” Exp. Neurol., 63, No. 1, 177–200 (1979).CrossRefPubMedGoogle Scholar
  25. 25.
    H. N. Lavezzi and D. S. Zahm, “The mesopontine rostromedial tegmental nucleus: An integrative modulator of the reward system,” Basal Ganglia, 1, No. 4, 191–200 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    A. M. Lee, L. H. Tai, A. Zador, and L. Wilbrecht, “Between the primate and ‘reptilian’ brain: rodent models demonstrate the role of corticostriatal circuits in decision making,” Neuroscience, 297, 66–74 (2015).CrossRefGoogle Scholar
  27. 27.
    A. Malin, B. Ciliax, and D. Rye, “Organization of the mesopontine tegmental-striatal pathway in the rat,” Soc. Neurosci. Abstr., 19, No. 1, 557 (1993).Google Scholar
  28. 28.
    M. M. Mesulam, “Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents,” J. Histochem. Cytochem., 26, No. 2, 106–117 (1978).CrossRefPubMedGoogle Scholar
  29. 29.
    S. J. Nagel, A. G. Machado, J. T. Gale, et al., “Preserving cortico-striatal function: deep brain stimulation in Huntington’s disease,” Front. Syst. Neurosci., 9, 32–37 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    J. A. Obeso, M. C. Rodriguez-Oroz, F. J. Blesa, and J. Guridi, “The globus pallidus pars externa and Parkinson’s disease. Ready for prime time?” Exp. Neurol., 202, No. 1, 1–7 (2006).CrossRefPubMedGoogle Scholar
  31. 31.
    A. Parent, Comparative Neurobiology of the Basal Ganglia, John Wiley and Sons, New York (1986).Google Scholar
  32. 32.
    P. Plaha, S. Khan, S. Javed, and S. S. Gill, “Caudal zona incerta as an alternative target for the treatment of tremor with deep brain stimulation,” Eur. Neurol. Rev., 4, No. 1, 91–96 (2010).CrossRefGoogle Scholar
  33. 33.
    P. Redgrave, N. Vautrelle, and J. N. J. Reynolds, “Functional properties of the basal ganglia’s re-entrant loop architecture: selection and reinforcement,” Neuroscience, 198, No. 1, 138–151 (2011).CrossRefPubMedGoogle Scholar
  34. 34.
    M. Rodriguez, P. Abdala, P. Barroso-Chinea, and T. Gonzalez-Hernandez, “The deep mesencephalic nucleus as an output center of basal ganglia: morphological and electrophysiological similarities and electrophysiological similarities with the substantia nigra,” J. Comp. Neurol., 438, No. 3, 12–31 (2001).CrossRefPubMedGoogle Scholar
  35. 35.
    K. Takakusaki, “Forebrain control of locomotor behaviors,” Brain Res. Rev., 57, No. 1, 192–198 (2008).CrossRefPubMedGoogle Scholar
  36. 36.
    S. R. Vincent, K. Satoch, and D. M. Amstrong, et al., “NADPHdiaphorase: a selective histochemical marker for the cholinergic neurons of the pontine reticular formation,” Neurosci. Lett., 43, No. 1, 31–36 (1983).CrossRefPubMedGoogle Scholar
  37. 37.
    T. Wichman and M. R. DeLong, “Deep-brain stimulation for basal ganglia disorders,” Basal Ganglia, 1, No. 2, 65–77 (2011).CrossRefGoogle Scholar
  38. 38.
    D. I. Wilson, A. A. MacLaren, and P. Winn, “On the relationships between the pedunculopontine tegmental nucleus, corticostriatal architecture, and the medial reticular formation,” in: The Basal Ganglia IX. Advances in Behavioural Biology, H. J. Groenewegen, P. Voornand, H. W. Berendse (eds.), (2009), Vol. 58, pp. 143–157.Google Scholar
  39. 39.
    N. J. Woolf, “Global and serial neurons form a hierarchically arranged interface proposed to underlie memory and cognition,” Neuroscience, 74, No. 3, 625–651 (1996).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Pavlov Institute of Physiology, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations