Neuroscience and Behavioral Physiology

, Volume 47, Issue 2, pp 168–172 | Cite as

Dynamics of Changes in the Fatty Acid Composition of the Auditory Cortex of the Brain in Rats after Single Audiogenic Convulsions

  • T. P. Kulagina
  • A. V. Aripovskii
  • T. A. Savina
  • T. G. Shchipakina
  • O. V. Godukhin

A small but significant increase in the quantity of lipid peroxidation-resistant saturated and monounsaturated fatty acids was found in the auditory cortex of Krushinskii–Molodkina (KM) rats, which have an inherited predisposition to audiogenic convulsions, as compared with Wistar rats. Assessment of the fatty acid composition of the auditory cortex in KM rats at 1 h and 1, 3, and 14 days after single audiogenic convulsions revealed changes at three days, evidencing significant depletion of the fatty acid pool at this time. At 14 days, the auditory cortex of KM rats showed recovery of most fatty acids. These results may be of value in developing new approaches to eliminating brain damage after convulsive seizures.


audiogenic convulsions auditory zone of the cortex fatty acids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Raevskii, V. G. Bashkatova, V. S. Kudrin, et al., “Contents of neurotransmitter amino acids and lipid peroxidation products in the brains of rats with a genetic predisposition to audiogenic convulsions,” Neirokhimiya, 12, No. 4, 47–54 (1995).Google Scholar
  2. 2.
    T. A. Savina, S. G. Levin, I. I. Poletaeva, et al., “Audiogenic kindling changes the subunit composition of BK channels in the dentate fascia of Krushinskii–Molodkina rats,” Biol. Membrany, 30, No. 5–6, 462–467 (2013).Google Scholar
  3. 3.
    A. F. Semiokhina, I. B. Fedotova, and I. I. Poletaev, “Krushinskii–Molodkina rats: studies of audiogenic epilepsy, vascular pathology, and behavior,” Zh. Vyssh. Nerv. Deyat., 56, No. 2, 298–316 (2006).Google Scholar
  4. 4.
    I. B. Fedotova, A. F. Semiokhina, G. V. Arkhipova, et al., “Differences in lipid composition in the brains of Krushinskii–Molodkina rats in audiogenic convulsive seizures and myoclonus,” Zh. Vyssh. Nerv. Deyat., 38, No. 3, 374–377 (1988).Google Scholar
  5. 5.
    L. Abdullah, J. E. Evans, S. Ferguson, et al., “Lipidomic analyses identify injury-specifi c phospholipid changes 3 mo after traumatic brain injury,” FASEB J., 28, No. 12, 5311–5321 (2014).CrossRefPubMedGoogle Scholar
  6. 6.
    E. S. Akarsu, S. Mamuk, and A. Comert, “Inhibition of pentylenetetrazol-induced seizures in rats by prostaglandin D2,” Epilepsy Res., 30, No. 1, 63–68 (1988).CrossRefGoogle Scholar
  7. 7.
    S. Auvin, “Fatty acid oxidation and epilepsy,” Epilepsy Res., 100, No. 3, 224–228 (2012).CrossRefPubMedGoogle Scholar
  8. 8.
    N. G. Bazan, “Omega-3 fatty acids, pro-infl ammatory signaling and neuroprotection,” Curr. Opin. Clin. Nutr. Metab. Care, 10, No. 2, 136–141 (2007).CrossRefPubMedGoogle Scholar
  9. 9.
    N. G. Bazan, J. M. Calandria, and W. C. Gordon, “Docosahexaenoic acid and its derivative neuroprotectin D1 display neuroprotective properties in the retina, brain and central nervous system,” Nestle Nutr. Inst. Workshop Ser., 77, 121–131 (2013).CrossRefPubMedGoogle Scholar
  10. 10.
    J. M. Calandria, V. L. Marcheselli, P. K. Mukherjee, et al., “Selective survival rescue in 15-lipoxygenase-1-defi cient retinal pigment epithelial cells by the novel docosahexaenoic acid-derived mediator, neuroprotectin D1,” J. Biol. Chem., 284, No. 26, 17877–17882 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    R. Citraro, E. Russo, F. Scicchitano, et al., “Antiepileptic action of N-palmitoylethanolamine through CB1 and PPAR-α receptor activation in a genetic model of absence epilepsy,” Neuropharmacology, 69, 115–126 (2013).CrossRefPubMedGoogle Scholar
  12. 12.
    R. J. Claycomb, S. J. Hewett, and J. A. Hewett, “Neuromodulatory role of endogenous interleukin-1β in acute seizures: possible contribution of cyclooxygenase-2,” Neurobiol. Dis., 45, No. 1, 234–242 (2012).CrossRefPubMedGoogle Scholar
  13. 13.
    A. F. Domenichiello, C. T. Chen, M. O. Trepanier, et al., “Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats,” J. Lipid Res., 55, No. 1, 62–74 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    D. R. Knapp, Handbook of Analytical Derivatization Reactions, John Wiley and Sons (1979).Google Scholar
  15. 15.
    I. Lauritzen, N. Blondeau, C. Heurteax, et al., “Polyunsaturated fatty acids are potent neuroprotectors,” EMBO J., 19, No. 8, 1784–1793 (2000).CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    G. Latocki, J. R. de Rivero Vaccari, O. Alonso, et al., “Oligodendrocyte vulnerability following traumatic brain injury in rats,” Neurosci. Lett., 499, No. 3, 143–148 (2011).CrossRefGoogle Scholar
  17. 17.
    T. Mori, N. Shimizu, M. Shibasaki, and T. Suzuki, “Involvement of the arachidonic acid cascade in the hypersusceptibility to pentylenetetrazole-induced seizure during diazepam withdrawal,” Biol. Pharm. Bull., 35, No. 12, 2243–2246 (2012).CrossRefPubMedGoogle Scholar
  18. 18.
    A. E. Musto, P. Gjorstrup, and N. G. Bazan, “The omega-3 fatty acid-derived neuroprotectin D1 limits hippocampal hyperexcitability and seizure susceptibility in kindling epileptogenesis,” Epilepsia, 52, No. 9, 1601–1608 (2011).Google Scholar
  19. 19.
    M. S. Oliveira, A. F. Furian, L. F. Royes, et al., “Cyclooxygenase-2/PGE2 pathway facilitates pentylenetetrazol-induced seizures,” Epilepsy Res., 79, No. 1, 14–21 (2008).CrossRefPubMedGoogle Scholar
  20. 20.
    R. N. Romcy-Pereira and N. Garcia-Cairasco, “Hippocampal cell proliferation and epileptogenesis after audiogenic kindling are not accompanied by mossy fi ber sprouting or Fluoro-Jade staining,” Neuroscience, 119, No. 2, 533–546 (2003).Google Scholar
  21. 21.
    N. T. Snider, V. J. Walker, and P. F. Hollenberg, “Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications,” Pharmacol. Rev., 62, No. 1, 136–154 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    T. W. Strine, R. Kobau, D. P. Chapman, et al., “Psychological distress, comorbidities, and health behaviors among U.S. adults with seizures: results from the 2002 National Health Interview Survey,” Epilepsia, 46, No. 7, 1133–1139 (2005).CrossRefPubMedGoogle Scholar
  23. 23.
    S. Suzuki, Q. Hongli, A. Okada, et al., “BDNF-dependent accumulation of palmitoleic acid in CNS neurons,” Cell. Mol. Neurobiol., 32, No. 8, 1367–1373 (2012).CrossRefPubMedGoogle Scholar
  24. 24.
    J. Y. Yu and P. L. Pearl, “Metabolic causes of epileptic encephalopathy,” Epilepsy Res. Treat., 2013, 124 934 (2013).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • T. P. Kulagina
    • 1
  • A. V. Aripovskii
    • 2
  • T. A. Savina
    • 3
  • T. G. Shchipakina
    • 3
  • O. V. Godukhin
    • 3
  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchinoRussia
  2. 2.State Scientific Center for Applied Microbiology and BiotechnologyObolenskRussia
  3. 3.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchinoRussia

Personalised recommendations