Neuroscience and Behavioral Physiology

, Volume 47, Issue 1, pp 33–39 | Cite as

The Role of Capsaicin-Sensitive Nerves in Regulating Blood Dehydroepiandrosterone Sulfate Levels in Rats in Normal Conditions and in Metabolic Syndrome

  • V. K. Spiridonov
  • Z. S. Tolochko
  • M. V. Ovsyukova
  • N. E. Kostina
  • T. A. Obut

The effects of stimulation of capsaicin-sensitive nerves (CSN, capsaicin 1 mg/kg, s.c.) and their deafferentation (capsaicin 150 mg/kg s.c.) on the blood dehydroepiandrosterone sulfate (DEAS) level in normal conditions and metabolic syndrome (MS) induced by consumption of fructose (12.5% solution, 10 weeks) were studied. The criterion for the development of MS was provided by data showing increased blood triglycerides, lipid peroxidation (LPO) products, and impaired glucose tolerance. Stimulation of CSN in rats with a normal diet led to an increased DEAS level, while deafferentation decreased the blood level of this hormone. The fructose diet decreased the DEAS level, induced triglyceridemia, increased LPO, and impaired glucose tolerance. The decreased blood DEAS concentration seen after consumption of fructose was eliminated by stimulation of CSN, with simultaneous reductions in indicators of metabolic syndrome. Preliminary deafferentation of CSN in fructose-consuming rats blocked the stimulation-induced restoration of DEAS. The authors suggest that CSN are involved in the mechanisms controlling the blood DEAS content in normal conditions and metabolic syndrome.


capsaicin-sensitive nerves DEAS fructose metabolic syndrome triglycerides lipid peroxidation glucose tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Andreeva, L. A. Kozhemyakin, and A. A. Kishkun, “Modification of a method for estimating lipid peroxides in the thiobarbituric acid test,” Lab. Delo, 11, 41–43 (1988).Google Scholar
  2. 2.
    M. I. Balabolkin, Endocrinology, Nauka, Moscow (1998).Google Scholar
  3. 3.
    T. A. Obut, Androgens in the Adaptation of the Body: the Biological Significance of Adrenal Androgens, Novosibirsk, Art-Avenue (2004).Google Scholar
  4. 4.
    R. V. Rozhivanov and V. V. Vaks, “Dehydroepiandrosterone: physiological role and potential for use as a drug,” Probl. Endokrinol., 51, No. 2, 46–51 (2005).Google Scholar
  5. 5.
    V. K. Spiridonov, Z. S. Tolochko, and N. E. Kostina, “Effects of damage to capsaicin-sensitive nerves on blood pressure in metabolic syndrome in rats,” Ros. Fiziol. Zh., 99, No. 9, 1077–1088 (2013).Google Scholar
  6. 6.
    Z. S. Tolochko and V. K. Spiridonov, “Effects of capsaicin on oxidative modification of proteins and arterial pressure in rats consuming fructose,” Eksperim. Klin. Farmakol., 75, No. 3, 3–6 (2012).Google Scholar
  7. 7.
    S. R. Bloom, “Adrenal responses to calcitonin gene-related peptide in conscious hypophysectomized calves,” J. Physiol., 409, 29–41 (1989).CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    R. N. Danaher, K. M. Loomes, B. L. Leonard, et al., “Evidence that alpha-calcitonin gene-related peptide is a neurohormone that controls systemic lipid availability and utilization,” Endocrinology, 149, No. 1, 154–160 (2008).Google Scholar
  9. 9.
    M. Dux, J. Rosta, S. Pintér, and G. Jancsó, “Loss of capsaicin-induced meningeal neurogenic sensory vasodilatation in diabetic rats,” Neuroscience, 150, No. 1, 194–201 (2007).Google Scholar
  10. 10.
    D. X. Gram, A. J. Hansen, C. F. Deacon, et al., “Sensory nerve desensitization by resiniferatoxin improves glucose tolerance and increases insulin secretion in Zucker Diabetic Fatty rats and is associated with reduced plasma activity of dipeptidyl peptidase IV,” Eur. J. Pharmacol., 509, No. 2–3, 211–217 (2005).CrossRefPubMedGoogle Scholar
  11. 11.
    P. A. Hansen, D. H. Han, L. A. Nolte, et al., “DHEA protects against visceral obesity and muscle insulin resistance in rats fed a high-fat diet,” Am. J. Physiol., 273, No. 5, 1704–1708 (1997).Google Scholar
  12. 12.
    M. Harati and M. Ani, “Vanadyl sulfate ameliorates insulin resistance and restores plasma dehydroepiandrosterone-sulfate levels in fructose-fed, insulin-resistant rats,” Clin. Biochem., Clin. Biochem., 37, No. 8, 694–697 (2004).Google Scholar
  13. 13.
    C. Heym, B. Braun, L. Klimachewski, and W. Kummer, “Chemical codes of sensory neurons innervating the guinea-pig adrenal gland,” Cell Tissue Res., 279, No. 1, 169–181 (1995).CrossRefPubMedGoogle Scholar
  14. 14.
    C. Heym, B. Braun, Y. Shuyi, et al., “Immunohistochemical correlation of human adrenal nerve fibres and thoracic dorsal root neurons with special reference to substance P,” Histochem. Cell Biol., 104, No. 3, 233–243 (1995).CrossRefPubMedGoogle Scholar
  15. 15.
    J. P. Hinson and G. P. Vinson, “Calcitonin gene-related peptide stimulates adrenocortical function in the isolated perfused rat adrenal gland in situ,” Neuropeptides, 16, No. 3, 129–133 (1990).Google Scholar
  16. 16.
    P. Holzer, “Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons,” Pharmacol. Rev., 43, No. 2, 143–201 (1991).PubMedGoogle Scholar
  17. 17.
    Z. Khitan and D. H. Kim, “Fructose: a key factor in the development of metabolic syndrome and hypertension,” J. Nutr. Metab., 2013, Art. 682673, 1–12 (2013).Google Scholar
  18. 18.
    P. D. Kroboth, F. S. Salek, A. L. Pittenger, et al., “DHEA and DHEA-S: a review,” J. Clin. Pharmacol., 39, No. 4, 327–348 (1999).CrossRefPubMedGoogle Scholar
  19. 19.
    B. Leighton and E. A. Foot, “The role of the sensory peptide calcitonin-gene-related peptide(s) in skeletal muscle carbohydrate metabolism: effects of capsaicin and resiniferatoxin,” Biochem. J., 307, Part 3, 707–712 (1995).Google Scholar
  20. 20.
    C. A. Maggi, “Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves,” Progr. Neurobiol., 45, No. 1, 1–98 (1995).CrossRefGoogle Scholar
  21. 21.
    J. E. Nestler, “Regulation of human dehydroepiandrosterone metabolism by insulin,” Ann. NY Acad. Sci., 774, 73–81 (1995).CrossRefPubMedGoogle Scholar
  22. 22.
    H. A. Peredo, M. Mayer, I. R. Faya, et al., “Dehydroepiandrosterone (DHEA) prevents the prostanoid imbalance in mesenteric bed of fructose-induced hypertensive rats,” Eur. J. Nutr., 47, No. 7, 349–356 (2008).CrossRefPubMedGoogle Scholar
  23. 23.
    K. Swato, M. Iemitsu, K. Aizawa, et al., “DHEA administration and exercise training improves insulin resistance in obese rats,” Nutr. Metab. (London), 9, No. 47, 1–7 (2012).Google Scholar
  24. 24.
    M. R. Shahraki, M. Harati, and A. R. Shahraki, “Prevention of high fructose-induced metabolic syndrome in male Wistar rats by aqueous extract of Tamarindus indica seed,” Acta Med. Iran, 49, No. 5, 277–283 (2011).PubMedGoogle Scholar
  25. 25.
    A. M. Traish, H. P. Kang, F. Saad, and A. T. Guay, “Dehydroepi androsterone (DHEA) – a precursor steroid or an active hormone in human physiology,” J. Sex. Med., 8, No. 11, 2960–2298 (2011).CrossRefPubMedGoogle Scholar
  26. 26.
    L. T. Tran, V. Yuen, and J. H. McNeill, “The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension,” Mol. Cell. Biochem., 332, No. 1–2, 145–159 (2009).CrossRefPubMedGoogle Scholar
  27. 27.
    Y. M. Ulrich-Lai, C. A. Harding-Rose, A. Guo, et al., “ACTH inhibits the capsaicin-evoked release of CGRP from rat adrenal afferent nerves,” Am. J. Physiol., Regul. Integr. Comp. Physiol., 280, No. 1, 137–142 (2001).Google Scholar
  28. 28.
    Y. Yamaguchi, S. Tanaka, T. Yamakawa, et al., “Reduced serum dehydroepiandrosterone levels in diabetic patients with hyperinsulinaemia,” Clin. Endocrinology, 49, No. 3, 377–383 (1998).CrossRefGoogle Scholar
  29. 29.
    Y. Zamami, S. Takatori, N. Hobara, et al., “Hyperinsulinemia induces hypertension associated with neurogenic vascular dysfunction resulting from abnormal perivascular innervations in rat mesenteric resistance arteries,” Hypertens. Res., 34, No. 11, 1190–1196 (2011).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • V. K. Spiridonov
    • 1
  • Z. S. Tolochko
    • 1
  • M. V. Ovsyukova
    • 1
  • N. E. Kostina
    • 1
  • T. A. Obut
    • 1
  1. 1.Research Institute of Physiology and Basic MedicineNovosibirskRussia

Personalised recommendations