Advertisement

Neuroscience and Behavioral Physiology

, Volume 46, Issue 8, pp 895–902 | Cite as

Effects of Stimulation of the Hypothalamic Nuclei on Neurons in the Inferior Vestibular Nucleus after Prolonged Vibration and Administration of Proline-Rich Peptide 1

  • S. G. Sarkisyan
  • V. A. Chavushyan
  • V. S. Kamenetskii
  • S. M. Minasyan
  • K. V. Melkumyan
  • J. S. Sarkisyan
Article
  • 16 Downloads

Impairments to vestibular function after exposure to vibration are to a significant extent due to adaptive-adjustment changes in neurotransmitter processes, which can be regulated by endogenous factors, particularly hypothalamic proline-rich peptide. Studies in Albino rats addressed the synaptic activity of individual neurons in the inferior vestibular nucleus in conditions of high-frequency stimulation of the paraventricular and supraoptic nuclei of the hypothalamus on exposure to vibration and systemic administration of proline-rich peptide 1. The poststimulus spike activity of neurons in the inferior vestibular nucleus in normal conditions was apparent mainly in the form of tetanic potentiation, while activity after vibration was apparent as post-tetanic potentiation. The combination of vibration and use of proline-rich peptide 1 restored the normal balance of excitatory and inhibitory poststimulus reactions and increased the level of excitability of neurons in the inferior vestibular nucleus.

Keywords

inferior vestibular nucleus vibration single neuron activity high-frequency stimulation paraventricular and supraoptic nuclei of the hypothalamus proline-rich peptide 1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Z. Doroshenko, V. A. Maiskii, and A. G. Kartseva, “Catecholaminergic neurons,” Dokl. Akad. Nauk SSSR, 282, No. 1, 232–236 (1985).PubMedGoogle Scholar
  2. 2.
    I. B. Meliksetyan, “Detection of Ca2+-dependent acid phosphatase activity in cells in brain structures in rats,” Morfologiya, 131, No. 2, 77–80 (2007).Google Scholar
  3. 3.
    S. M. Minasyan, O. G. Baklavadzhyan, S. G. Saakyan, et al., “Hypotha lamic regulation of neuron activity in the vestibular nuclei on exposure to vibration,” Zh. Vyssh. Nerv. Deyat., 47, No. 4, 701–707 (1977).Google Scholar
  4. 4.
    S. M. Minasyan, Integrative Brain Structures in Vibration, Erevan State University, Erevan (1990).Google Scholar
  5. 5.
    V. S. Raitses and A. A. Shlyakhovenko, “Central control of the reactions of the vestibular system,” Usp. Fiziol. Nauk., 27, No. 2, 56–70 (1990).Google Scholar
  6. 6.
    S. G. Sarkisyan, S. M. Minasyan, I. B. Meliksetyan, et al., “The protective effect of proline-rich hypothalamic neurohormone on the activity of vestibular neurons in conditions of unilateral afferent deprivation,” in: Current Questions in Functional Interhemisphere Asymmetry and Neuroplasticity, Moscow (2008).Google Scholar
  7. 7.
    S. G. Sarkisyan, V. A. Chavushyan, I. B. Meliksetyan, et al., “Effects of stimulation of the hypothalamic nuclei on neurons in the inferior vestibular nucleus after unilateral labyrinthectomy and administration of PRP-1,” in: Current Questions in Functional Interhemisphere Asymmetry and Neuroplasticity, Moscow (2012), pp. 372–376.Google Scholar
  8. 8.
    A. V. Sem’yanov, “GABAergic inhibition in the CNS. Types of receptors and mechanisms of tonic GABA-mediated inhibitory actions,” Neirofiziologiya, 34, No. 1, 82–92 (2002).Google Scholar
  9. 9.
    F. Bergquist, A. Ruthven, M. Ludwig, and M. Dutia, “Histaminergic and glycinergic modulation of GABA release in the vestibular nuclei of normal and labyrinthectomised rats,” J. Physiol., 577, No. 3, 857–868 (2006).CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    A. Brodal, “Anatomy of the vestibular nuclei and their connections,” in: Handbook of Sensory Physiology, H. H. Kornhuber (ed.), Springer Verlag, Berlin–Heidelberg–New York (1974), Vol. 6, Part 1, pp. 240–352.Google Scholar
  11. 11.
    J. J. Cotto, S. G. Fox, and R. I. Morimoto, “HSF1 granules: a novel stress-induced compartment of human cells,” J. Cell Sci., 110, 2925–2934 (1997).PubMedGoogle Scholar
  12. 12.
    A. A. Galoyan, “Brain Neurosecretory Cytokines,” in: Immune Response and Neuronal Survival, Kluwer Academic Plenum Publisher (2004), pp. 1–188.Google Scholar
  13. 13.
    A. A. Galoyan, “Neurochemistry of brain neuroendocrine immune system: signal molecules,” Neurochem. Res., 25, No. 9–10, 1343–1355 (2001).Google Scholar
  14. 14.
    A. A. Galoyan and B. Ya. Gurvits, “The discovery of peptidyl-prolyl-cis-transferase in hypothalamus (its new functions),” Neurochemistry (RAS and NAS RA) 11, No. 1, 89–92 (1992).Google Scholar
  15. 15.
    M. Ito, “Two extensive inhibitory systems for brainstem nuclei,” in: Structure and Functions of Inhibitory Neuronal Mechanisms, Pergamon Press, Oxford (1968), pp. 309–322.Google Scholar
  16. 16.
    D. K. Hambartsumyan, F. G. Vardanyan, K. A. Gevondyan, et al., “The influence of proline-rich peptide on the activity of the system of neuromediatory amino acids of glutamine-glutamate-GABA,” Neurochem. J. Moscow, 20, 145–152 (2003).Google Scholar
  17. 17.
    J. I. Morgen and T. Curran, “Stimulus-transcription coupling in neurons: role of cellular immediate-early genes,” Trends Neurosci., 12, 459–462 (1998).CrossRefGoogle Scholar
  18. 18.
    K. Pacak and M. Palkovits, “Stressor specificity of central neuroendocrine responses: implications for stress-related disorders,” Endocr. Rev., 22, 502–548 (2001).CrossRefPubMedGoogle Scholar
  19. 19.
    G. Paxinos and C. Watson, “The Rat Brain in Stereotaxic Coordinates, Academic Press, New York (2005).Google Scholar
  20. 20.
    S. H. Sarkisyan, V. A. Chavushyan, I. B. Meliksetyan, et al., “Effects of stimulation of the hypothalamic nuclei and treatment with a proline-rich peptide on neurons of the superior vestibular nuclei during exposure to vibration,” Neurochem. J., 4, No. 4, 304–313 (2010).CrossRefGoogle Scholar
  21. 21.
    A. Verkhratsky and E. C. Toescu, “Neuronal-glial networks as substrate for CNS integration,” J. Cell. Mol. Med., 10, No. 4, 826–836 (2006).CrossRefPubMedGoogle Scholar
  22. 22.
    V. J. Wilson, P. Zarecki, R. H. Schor, et al., “Cortical influences on the vestibular nuclei of the cat,” Exp. Brain Res., 125, No. 1, 1–13 (1999).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. G. Sarkisyan
    • 1
  • V. A. Chavushyan
    • 2
  • V. S. Kamenetskii
    • 2
  • S. M. Minasyan
    • 1
  • K. V. Melkumyan
    • 1
  • J. S. Sarkisyan
    • 2
  1. 1.Erevan State UniversityErevanArmenia
  2. 2.Institute of PhysiologyNational Academy of Sciences of the Republic of ArmeniaErevanArmenia

Personalised recommendations