Neuroscience and Behavioral Physiology

, Volume 46, Issue 6, pp 601–605 | Cite as

Effects of Unpredictable Chronic Mild Stress on the Effects of Antidepressants in the Forced Swimming Test

  • N. V. Kudryashov
  • T. S. Kalinina
  • T. A. Voronina

The effects of unpredictable chronic mild stress on the effects of the tricyclic antidepressant amitriptyline (10 mg/kg) and the selective serotonin reuptake inhibitor fluoxetine (20 mg/kg) in the Porsolt test were studied in male mongrel mice. Single doses of fluoxetine given after 14-day chronic mild stress lacked any antidepressant effect, while subchronic administration for 14 days strengthened depressive-like reactions. After stress for 28 days, the antidepressant effect of fluoxetine was present regardless of the number of doses given. Amitriptyline showed antidepressant activity independently of the duration of stress and the administration regime, though the presence of stress decreased the intensity of the antiimmobility effect. Thus, the number of doses and the duration of unpredictable mild stress are parameters determining the efficacy of antidepressants in the forced swimming test.


chronic mild stress antidepressants mouse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Andreatini, “Depression and the hypothalamic-pituitary-adrenal axis: increasing the scope,” Acta Neuropsychiatrica, 24, 1–3 (2012).CrossRefGoogle Scholar
  2. 2.
    V. Castagne, R. Porsolt, and P. Moser, “Early behavioral screening for antidepressants and anxiolytics,” Drug Dev. Res., 67, 729–742 (2006).CrossRefGoogle Scholar
  3. 3.
    A. E. Castaneda, A. Tuulio-Henriksson, M. Marttunen, et al., “A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults,” J. Affect. Disord., 106, 1–27 (2008).CrossRefPubMedGoogle Scholar
  4. 4.
    D. Ciraulo and R. Shader, Pharmacotherapy of Depression, Humana Press, New York (2011), 2nd ed.Google Scholar
  5. 5.
    M. Gavish, I. Bachman, R. Shoukrun, et al., “Enigma of the peripheral benzodiazepine receptor,” Pharmacol. Rev., 51, No. 4, 629–650 (1999).PubMedGoogle Scholar
  6. 6.
    J. Gorman and J. Docherty, “A hypothesized role for dendritic remodeling in the etiology of mood and anxiety disorders,” J. Neuropsychiatry Clin. Neurosci., 22, No. 3, 256–264 (2010).CrossRefPubMedGoogle Scholar
  7. 7.
    L. Griffin and S. Mellon, “Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes,” Proc. Natl. Acad. Sci. USA, 96, No. 23, 13,512–13,517 (1999).CrossRefGoogle Scholar
  8. 8.
    J. Gronli, Chronic Mild Stress – an Animal Model of Depression: from Behavior to Molecules: Doctoral Thesis, University of Bergen (2006).Google Scholar
  9. 9.
    B. Gunn, A. Brown, J. Lambert, and D. Belelli, “Neurosteroids and GABAA receptor interactions: a focus on stress,” Neuroscience, 5, A131 (2011).Google Scholar
  10. 10.
    J. Heinzmann, A. Knapman, P. van Nieuwenhuijzen, et al., “Fluoxetine impacts hypothalamic-pituitary-adrenal axis regulation and changes stress-coping behaviour in mice selectively bred for extremes in stress reactivity,” Pharmacopsychiatry, 21, A54 (2011).Google Scholar
  11. 11.
    L. Heisler, N. Pronchuk, K. Nonogaki, et al., “Serotonin activates the hypothalamic-pituitary-adrenal axis via serotonin 2C receptor stimulation,” J. Neurosci., 27, No. 26, 6956–6964 (2007).CrossRefPubMedGoogle Scholar
  12. 12.
    R. Hilal-Dandan and L. Brunton, Goodman and Gilman’s The Pharmacological Basis of Therapeutics, McGraw-Hill Professional Publishing, New York (2011), 12th ed.Google Scholar
  13. 13.
    S. A. Johnson, N. M. Fournier, and L. E. Kalynchuk, “Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor,” Behav. Brain. Res., 168, 280–288 (2006).CrossRefPubMedGoogle Scholar
  14. 14.
    J. E. Malberg, A. J. Eisch, E. J. Nestler, and R. S. Duman, “Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus,” J. Neurosci., 20, No. 24, 9104–9110 (2000).PubMedGoogle Scholar
  15. 15.
    I. Mendez-David, R. Hen, A. M. Gardier, and D. J. David, “Adult hippocampal neurogenesis: An actor in the antidepressant-like action,” Ann. Pharm. Fr., 71, No. 3, 143–149 (2013).CrossRefPubMedGoogle Scholar
  16. 16.
    M. E. Page, M. J. Detke, A. Dalvi, et al., “Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test,” Psychopharmacology, 147, No. 2, 162–167 (1999).Google Scholar
  17. 17.
    M. T. Perona, S. Waters, F. S. Hall, et al., “Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions,” Behav. Pharmacol., 19, No. 5–6, 566–574 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    B. Petit-Demouliere, F. Chenu, and M. Bourin, “Forced swimming test in mice: a review of antidepressant activity,” Psychopharmacology, 177, No. 3, 245–255 (2005).Google Scholar
  19. 19.
    G. Pinna, E. Costa, and A. Guidotti, “Fluoxetine and norfluoxetine stereospecifically facilitate pentobarbital sedation by increasing neurosteroids,” Proc. Natl. Acad. Sci. USA, 101, No. 16, 6222–6225 (2004).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    R. D. Porsolt, “Animal model of depression,” Biomedicine, 30, No. 3, 139–140 (1979).Google Scholar
  21. 21.
    A. Sahay and R. Hen, “Adult hippocampal neurogenesis in depression,” Nat. Neurosci., 10, 1110–1115 (2007).CrossRefPubMedGoogle Scholar
  22. 22.
    V. Uzunova, Y. Sheline, J. M. Davis, et al., “Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine,” Proc. Natl. Acad. Sci. USA, 95, 3239–3244 (1998).CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    V. van der Meersch-Mougeot, M. J. da Rocha, C. Monier, et al., “Benzodiazepines reverse the anti-immobility effect of antidepressants in the forced swimming test in mice,” Neuropharmacol., 32, No. 5, 439–446 (1993).CrossRefGoogle Scholar
  24. 24.
    B. Vollmayr and F. Henn, “Stress models of depression,” Clin. Neurosci. Res., 3, 245–251 (2003).CrossRefGoogle Scholar
  25. 25.
    S. A. Vreeburg, W. J. Hoogendijk, J. van Pelt, et al., “Major Depressive Disorder and Hypothalamic-Pituitary-Adrenal Axis Activity,” Arch. Gen. Psychiatry, 66, No. 6, 617–626 (2009).CrossRefPubMedGoogle Scholar
  26. 26.
    J. W. Wang, D. J. David, J. E. Monckton, et al., “Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells,” J. Neurosci., 28, No. 6, 1374–1384 (2008).CrossRefPubMedGoogle Scholar
  27. 27.
    J. L. Warner-Schmidt and R. S. Duman, “Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment,” Hippocampus, 16, 239–249 (2006).CrossRefPubMedGoogle Scholar
  28. 28.
    P. Willner, “Chronic mild stress (CMS) revisited: Consistency and behavioural neurobiological concordance in the effects of CMS,” Neuropsychobiology, 52, 90–110 (2005).CrossRefPubMedGoogle Scholar
  29. 29.
    E. A. Young, M. Altemus, J. F. Lopez, et al., “HPA axis activation in major depression and response to fluoxetine: a pilot study,” Psychoneuroendocrinology, 29, No. 9, 1198–1204 (2004).Google Scholar
  30. 30.
    Q. Zhou, K. J. Homma, and M. M. Poo, “Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses,” Neuron, 44, No. 5, 749–757 (2004).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • N. V. Kudryashov
    • 1
  • T. S. Kalinina
    • 1
  • T. A. Voronina
    • 1
  1. 1.Zakusov Research Institute of PharmacologyMoscowRussia

Personalised recommendations