Skip to main content
Log in

Effects of Unpredictable Chronic Mild Stress on the Effects of Antidepressants in the Forced Swimming Test

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The effects of unpredictable chronic mild stress on the effects of the tricyclic antidepressant amitriptyline (10 mg/kg) and the selective serotonin reuptake inhibitor fluoxetine (20 mg/kg) in the Porsolt test were studied in male mongrel mice. Single doses of fluoxetine given after 14-day chronic mild stress lacked any antidepressant effect, while subchronic administration for 14 days strengthened depressive-like reactions. After stress for 28 days, the antidepressant effect of fluoxetine was present regardless of the number of doses given. Amitriptyline showed antidepressant activity independently of the duration of stress and the administration regime, though the presence of stress decreased the intensity of the antiimmobility effect. Thus, the number of doses and the duration of unpredictable mild stress are parameters determining the efficacy of antidepressants in the forced swimming test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Andreatini, “Depression and the hypothalamic-pituitary-adrenal axis: increasing the scope,” Acta Neuropsychiatrica, 24, 1–3 (2012).

    Article  Google Scholar 

  2. V. Castagne, R. Porsolt, and P. Moser, “Early behavioral screening for antidepressants and anxiolytics,” Drug Dev. Res., 67, 729–742 (2006).

    Article  CAS  Google Scholar 

  3. A. E. Castaneda, A. Tuulio-Henriksson, M. Marttunen, et al., “A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults,” J. Affect. Disord., 106, 1–27 (2008).

    Article  PubMed  Google Scholar 

  4. D. Ciraulo and R. Shader, Pharmacotherapy of Depression, Humana Press, New York (2011), 2nd ed.

  5. M. Gavish, I. Bachman, R. Shoukrun, et al., “Enigma of the peripheral benzodiazepine receptor,” Pharmacol. Rev., 51, No. 4, 629–650 (1999).

    CAS  PubMed  Google Scholar 

  6. J. Gorman and J. Docherty, “A hypothesized role for dendritic remodeling in the etiology of mood and anxiety disorders,” J. Neuropsychiatry Clin. Neurosci., 22, No. 3, 256–264 (2010).

    Article  PubMed  Google Scholar 

  7. L. Griffin and S. Mellon, “Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes,” Proc. Natl. Acad. Sci. USA, 96, No. 23, 13,512–13,517 (1999).

    Article  CAS  Google Scholar 

  8. J. Gronli, Chronic Mild Stress – an Animal Model of Depression: from Behavior to Molecules: Doctoral Thesis, University of Bergen (2006).

  9. B. Gunn, A. Brown, J. Lambert, and D. Belelli, “Neurosteroids and GABAA receptor interactions: a focus on stress,” Neuroscience, 5, A131 (2011).

    Google Scholar 

  10. J. Heinzmann, A. Knapman, P. van Nieuwenhuijzen, et al., “Fluoxetine impacts hypothalamic-pituitary-adrenal axis regulation and changes stress-coping behaviour in mice selectively bred for extremes in stress reactivity,” Pharmacopsychiatry, 21, A54 (2011).

    Google Scholar 

  11. L. Heisler, N. Pronchuk, K. Nonogaki, et al., “Serotonin activates the hypothalamic-pituitary-adrenal axis via serotonin 2C receptor stimulation,” J. Neurosci., 27, No. 26, 6956–6964 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. R. Hilal-Dandan and L. Brunton, Goodman and Gilman’s The Pharmacological Basis of Therapeutics, McGraw-Hill Professional Publishing, New York (2011), 12th ed.

  13. S. A. Johnson, N. M. Fournier, and L. E. Kalynchuk, “Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor,” Behav. Brain. Res., 168, 280–288 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. J. E. Malberg, A. J. Eisch, E. J. Nestler, and R. S. Duman, “Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus,” J. Neurosci., 20, No. 24, 9104–9110 (2000).

    CAS  PubMed  Google Scholar 

  15. I. Mendez-David, R. Hen, A. M. Gardier, and D. J. David, “Adult hippocampal neurogenesis: An actor in the antidepressant-like action,” Ann. Pharm. Fr., 71, No. 3, 143–149 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. M. E. Page, M. J. Detke, A. Dalvi, et al., “Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test,” Psychopharmacology, 147, No. 2, 162–167 (1999).

  17. M. T. Perona, S. Waters, F. S. Hall, et al., “Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions,” Behav. Pharmacol., 19, No. 5–6, 566–574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. B. Petit-Demouliere, F. Chenu, and M. Bourin, “Forced swimming test in mice: a review of antidepressant activity,” Psychopharmacology, 177, No. 3, 245–255 (2005).

  19. G. Pinna, E. Costa, and A. Guidotti, “Fluoxetine and norfluoxetine stereospecifically facilitate pentobarbital sedation by increasing neurosteroids,” Proc. Natl. Acad. Sci. USA, 101, No. 16, 6222–6225 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. R. D. Porsolt, “Animal model of depression,” Biomedicine, 30, No. 3, 139–140 (1979).

  21. A. Sahay and R. Hen, “Adult hippocampal neurogenesis in depression,” Nat. Neurosci., 10, 1110–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. V. Uzunova, Y. Sheline, J. M. Davis, et al., “Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine,” Proc. Natl. Acad. Sci. USA, 95, 3239–3244 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. V. van der Meersch-Mougeot, M. J. da Rocha, C. Monier, et al., “Benzodiazepines reverse the anti-immobility effect of antidepressants in the forced swimming test in mice,” Neuropharmacol., 32, No. 5, 439–446 (1993).

    Article  Google Scholar 

  24. B. Vollmayr and F. Henn, “Stress models of depression,” Clin. Neurosci. Res., 3, 245–251 (2003).

    Article  Google Scholar 

  25. S. A. Vreeburg, W. J. Hoogendijk, J. van Pelt, et al., “Major Depressive Disorder and Hypothalamic-Pituitary-Adrenal Axis Activity,” Arch. Gen. Psychiatry, 66, No. 6, 617–626 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. J. W. Wang, D. J. David, J. E. Monckton, et al., “Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells,” J. Neurosci., 28, No. 6, 1374–1384 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. J. L. Warner-Schmidt and R. S. Duman, “Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment,” Hippocampus, 16, 239–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. P. Willner, “Chronic mild stress (CMS) revisited: Consistency and behavioural neurobiological concordance in the effects of CMS,” Neuropsychobiology, 52, 90–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. E. A. Young, M. Altemus, J. F. Lopez, et al., “HPA axis activation in major depression and response to fluoxetine: a pilot study,” Psychoneuroendocrinology, 29, No. 9, 1198–1204 (2004).

  30. Q. Zhou, K. J. Homma, and M. M. Poo, “Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses,” Neuron, 44, No. 5, 749–757 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kudryashov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 101, No. 2, pp. 163–170, February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashov, N.V., Kalinina, T.S. & Voronina, T.A. Effects of Unpredictable Chronic Mild Stress on the Effects of Antidepressants in the Forced Swimming Test. Neurosci Behav Physi 46, 601–605 (2016). https://doi.org/10.1007/s11055-016-0284-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0284-z

Keywords

Navigation