Advertisement

Neuroscience and Behavioral Physiology

, Volume 46, Issue 5, pp 523–528 | Cite as

Information Processing and Some Indicators of Brain Metabolism in Patients at Ultra-High Risk of Developing Endogenous Psychosis

  • M. V. Shendyapina
  • M. A. Omel’chenko
  • I. S. Lebedeva
  • P. S. Kanonovich
  • N. A. Semenova
  • M. V. Ublinskii
  • D. M. Dmitrienko
  • T. A. Akhadov
  • O. A. Simonova
  • V. G. Kaleda
Article
  • 19 Downloads

Objective. Much attention in biological psychiatry in recent decades had been paid to functional and structural anomalies of the brain in groups at high risk of developing endogenous psychoses. Linkages between neurophysiological and neuroimaging parameters have been studied in cases of ultra-high risk of developing endogenous psychoses. The present report presents some results from the initial stage of this investigation. Materials and methods. A total of 56 patients aged 17–25 years with nonpsychotic mental disorders were studied. The control group consisted of 20 mentally healthy patients of comparable age and gender. Neurophysiological studies addressed measures characterizing the ability of the brain to “regulate” the volume of incoming information (sensory gating). Localizing proton MR spectroscopy was used simultaneously to determine some measures of metabolic processes in the brain (the glutamate/glutamine index and levels of N-acetylaspartate and choline-containing substances in the dorsolateral prefrontal cortex and thalamus of the left and right hemispheres and the genu and splenium of the corpus callosum. Results and conclusions. The results suggest impairment to the sensory filter in patients of the ultra-high risk group for developing endogenous psychoses; there was no correlation with the metabolic processes studied. These latter were normal or became normal during treatment.

Keywords

schizophrenia evoked potentials MR spectroscopy ultra-high risk group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Davis and S. File, Habituation, Sensitization, and Behavior, Academic Press, New York (1984).Google Scholar
  2. 2.
    Z. I. Storozheva, A. V. Kirenskaya, I. E. Lazarev, et al., “Studies of the prestimulus modification of the acoustic startle reaction in healthy subjects and schizophrenia patients,” Zh. Nevrol. Psikhiat., 111, No. 2, 72 (2011).Google Scholar
  3. 3.
    N. R. Swerdlow, M. Weber, Y. Qu, et al., “Realistic expectations of prepulse inhibition in translational models for schizophrenia research,” Psychopharmacology, 199, No. 3, 331–338 (2008).Google Scholar
  4. 4.
    N. Boutrus, H. Nasrallah, R. Leighty, et al., “Auditory evoked potentials, clinical vs research applications,” Psychiat. Res., 69, 183–195 (2010).CrossRefGoogle Scholar
  5. 5.
    M. J. van Tricht, D. H. Nieman, J. H. Koelman, et al., “Auditory ERP components before and after transition to a first psychotic episode,” Biol. Psychol.,” 87, No. 3, 350–357 (2011).Google Scholar
  6. 6.
    M. H. Hsieh, J. C. Shan, W. L. Huang, et al., “Auditory event-related potential of subjects with suspected pre-psychotic state and first-episode psychosis,” 140, No. 1, 243–249 (2012).Google Scholar
  7. 7.
    A. Brockhaus-Dumke, F. Schultze-Lutter, R. Muelle, et al., “Sensory gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, and chronic patients,” Biol. Psychiatry, 64, No. 5, 376–384 (2008).CrossRefPubMedGoogle Scholar
  8. 8.
    P. Tibbo, S. E. Purdon, A. Valiakalayil, et al., “Elevated 3T proton MRS glutamate levels associated with poor Continuous Performance Test (CPT-0X) scores and genetic risk for schizophrenia,” Schizophr. Res., 99, No. 1, 218–224 (2008).PubMedGoogle Scholar
  9. 9.
    C. de la Fuente-Sandoval, P. Leon-Ortiz, R. Favila, et al., “Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis,” Neuropsychopharmacology, 36, No. 9, 1781–1791 (2011).Google Scholar
  10. 10.
    S. J. Wood, C. Pantelis, D. Velakoulis, et al., “Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison,” Lancet, 361, No. 9354, 281–288 (2003).Google Scholar
  11. 11.
    N. Tandon, N. R. Bolo, K. Sanghavi, et al., “Brain metabolite alterations in young adults at familial high risk for schizophrenia using proton magnetic resonance spectroscopy,” Schizophr. Res., 148, No. 1, 59–66 (2013).CrossRefPubMedGoogle Scholar
  12. 12.
    Y. Shirayama, T. Obata, D. Matsuzawa, et al., “Specific metabolites in the medial prefrontal cortex are associated with the neurocognitive deficits in schizophrenia: a preliminary study,” Neuroimage, 49, No. 3, 2783–2790 (2010).Google Scholar
  13. 13.
    S. Brugger, J. M. Davis, S. Leucht, and J. M. Stone, “Proton magnetic resonance spectroscopy and illness stage in schizophrenia – a systematic review and meta-analysis,” Biol. Psychiatry, 69, No. 5, 495–503 (2011).CrossRefPubMedGoogle Scholar
  14. 14.
    K. Aydin, A. Ucok, and J. Guler, “Altered metabolic integrity of corpus callosum among individuals at ultra high risk of schizophrenia and first-episode patients,” Biol. Psychiatry, 64, No. 9, 750–757 (2008).CrossRefPubMedGoogle Scholar
  15. 15.
    T. J. Miller, T. H. McGlashan, S. W. Woods, et al., “Symptom assessment in schizophrenic prodromal states,” Psych. Quart., 70, No. 4, 273–287 (1999).CrossRefGoogle Scholar
  16. 16.
    T. H. McGlashan, T. J. Miller, J. L. Rosen, et al., “Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: predictive validity, interrater reliability, and training to reliability,” Schizophr. Bull., 29, No. 4, 703 (2003).Google Scholar
  17. 17.
    N. N. Boutrus, B. H. Jansen, and L. Hu, “Auditory evoked potential variability in healthy and schizophrenia subjects,” Clin. Neurophys., 121, No. 8, 1233–1239 (2010).CrossRefGoogle Scholar
  18. 18.
    N. N. Boutros, O. Korzyukov, B. Jansen, et al., “Sensory gating deficits during the mid-latency phase of information processing in medicated schizophrenia patients,” Psych. Res., 126, No. 3, 203–215 (2004).CrossRefGoogle Scholar
  19. 19.
    N. N. Boutros, A. Brockhaus-Dumke, K. Gjini, et al., “Sensorygating deficit of the N100 mid-latency auditory evoked potential in medicated schizophrenia patients,” Schizophr. Res., 113, No. 2, 339–346 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    I. Uhl, P. Mavrogiorgou, C. Norra, et al., “H-MR spectroscopy in ultra-high risk and first episode stages of schizophrenia,” J. Psychiatr. Res., 45, No. 9, 1135–1139 (2011).CrossRefPubMedGoogle Scholar
  21. 21.
    P. Ohrmann, “Neurochemie der Schizophrenie: Möglichkeiten der Magnetresonanzspektroskopie,” in: Universitätskolloquien zur Schizophrenie, Steinkopff (2004), pp. 125–130.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. V. Shendyapina
    • 1
  • M. A. Omel’chenko
    • 1
  • I. S. Lebedeva
    • 1
  • P. S. Kanonovich
    • 1
  • N. A. Semenova
    • 2
    • 3
    • 4
  • M. V. Ublinskii
    • 2
  • D. M. Dmitrienko
    • 2
  • T. A. Akhadov
    • 2
  • O. A. Simonova
    • 1
  • V. G. Kaleda
    • 1
  1. 1.National Mental Health CenterRussian Academy of Medical SciencesMoscowRussia
  2. 2.Research Institute of Urgent Pediatric Surgery and Traumatology, Moscow Department of HealthMoscowRussia
  3. 3.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Semenov Institute of PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations