Neuroscience and Behavioral Physiology

, Volume 46, Issue 3, pp 344–347 | Cite as

Studies of Telomere Length in Patients with Parkinson’s Disease

  • A. K. Kolyada
  • A. M. Vaiserman
  • D. S. Krasnenkov
  • I. N. Karaban’

Study aim. Short telomeres forming as a result of double-stranded DNA breaks and under-replication cause arrest of the cell cycle, leading to cell senescence and death. Telomere erosion is an important mechanism regulating the aging process, limiting cell proliferation. Many studies in telomere biology in recent decades have shown that telomere DNA and telomere proteins are involved in the pathogenesis of various diseases in humans. The aim of the present work was to study telomere length in Parkinson’s disease (PD). Materials and methods. Telomere length was measured in buccal epithelial cells and leukocytes from patients with PD and a control group. Results and conclusions. Telomeres in buccal epithelial cells were found to be shorter in PD patients than in the control group; telomere lengths in blood cells were identical. It is suggested that telomere shortening in buccal epithelial cells may be due to oxidative stress and may therefore be used as a marker for PD at the early stages of disease.


Parkinson’s disease telomeres telomere theory of aging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. P. Longhese, “DNA damage response at functional and dysfunctional telomeres,” Genes Dev., 22, 125–140 (2008).PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    J. D. Griffith, L. Comeau, S. Rosenfeld, et al., “Mammalian telomeres end in a large duplex loop,” Cell, 97, 503–514 (1999).CrossRefPubMedGoogle Scholar
  3. 3.
    T. de Lange, “Protection of mammalian telomeres,” Oncogene, 21, 532–540 (2002).CrossRefPubMedGoogle Scholar
  4. 4.
    T. de Lange, “Shelterin: the protein complex that shapes and safeguards human telomeres,” Genes Dev., 19, 2100–2110 (2005).CrossRefPubMedGoogle Scholar
  5. 5.
    C. J. Cairney and W. N. Keith, “Telomerase redefined: integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity,” Biochimie, 90, 13–23 (2008).CrossRefPubMedGoogle Scholar
  6. 6.
    Y. Zhao, A. J. Sfeir, Y. Zou, et al., “Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells,” Cell, 138, 463–475 (2009).PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    L. Hayflick, “The limited in vitro lifetime of human diploid cell strains,” Exp. Cell Res., 37, 614–636 (1965).CrossRefPubMedGoogle Scholar
  8. 8.
    J. R. Mitchell, J. Cheng, and K. Collins, “A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3’ end,” Mol. Cell Biol., 19, 567–576 (1999).PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    A. Aviv, A. Valdes, J. P. Gardner, et al., “Menopause modifies the association of leukocyte telomere length with insulin resistance and inflammation,” J. Clin. Endocrinol. Metab., 91, 635–640 (2006).CrossRefPubMedGoogle Scholar
  10. 10.
    T. von Zglinicki, “Oxidative stress shortens telomeres,” Trends Biochem. Sci., 27, 339–344 (2002).CrossRefGoogle Scholar
  11. 11.
    R. W. Frenck, Jr., E. H. Blackburn, and K. M. Shannon, “The rate of telomere sequence loss in human leukocytes varies with age,” Proc. Natl. Acad. Sci. USA, 95, 5607–5610 (1998).PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    U. Friedrich, E. Gries, M. Schwab, et al., “Telomere length in different tissues of elderly patients,” Mech. Ageing Dev., 119, 89–99 (2000).CrossRefPubMedGoogle Scholar
  13. 13.
    H. Vaziri, W. Dragowska, R. C. Allsop, et al., “Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age,” Proc. Natl. Acad. Sci. USA, 91, 9857–9860 (1994).PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    S. Brouilette, R. K. Singh, J. R. Thompson, et al., “Cell telomere length and risk of premature myocardial infarction,” Arterioscler. Thromb. Vasc. Biol., 23, 842–846 (2003).CrossRefPubMedGoogle Scholar
  15. 15.
    M. Ogami, Y. Ikura, M. Ohsawa, et al., “Telomere shortening in human coronary artery diseases,” Arterioscler. Thromb. Vasc. Biol., 24, 546–550 (2004).CrossRefPubMedGoogle Scholar
  16. 16.
    O. Uziel, J. A. Singer, V. Danicek, et al., “Telomere dynamics in arteries and mononuclear cells of diabetic patients: effect of diabetes and of glycemic control,” Exp. Gerontol., 42, 971–978 (2007).CrossRefPubMedGoogle Scholar
  17. 17.
    L. A. Panossian, V. R. Porter, H. F. Valenzuela, et al., “Telomere shortening in T cells correlates with Alzheimer’s disease status,” Neurobiol. Ageing, 24, 77–84 (2003).CrossRefGoogle Scholar
  18. 18.
    A. M. Valdes, T. Andrew, J. P. Gardner, et al., “Obesity, cigarette smoking, and telomere length in women,” Lancet, 366, 662–664 (2005).CrossRefPubMedGoogle Scholar
  19. 19.
    E. S. Epel, E. H. Blackburn, F. Lin, et al., “Accelerated telomere shortening in response to life stress,” Proc. Natl. Acad. Sci. USA, 101, 17312–17315 (2004).PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    R. M. Cawthon, “Telomere length measurement by a novel monochrome multiplex quantitative PCR method,” Nucl. Acids Res., 37, 21 (2009).CrossRefGoogle Scholar
  21. 21.
    R. M. Cawthon, “Telomere measurement by quantitative PCR,” Nucl. Acids Res., 30, 47 (2002).CrossRefGoogle Scholar
  22. 22.
    J. Z. Guan, T. Maeda, M. Sugano, et al., “A percentage analysis of the telomere length in Parkinson’s disease patients,” J. Gerontol. A. Biol. Sci. Med. Sci., 63, 467–473 (2008).CrossRefPubMedGoogle Scholar
  23. 23.
    H. Wang, H. Chen, X. Gao, et al., “Telomere length and risk of Parkinson’s disease,” Mov. Disord., 23, 302–305 (2008).PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    T. Maeda, J. Z. Guan, J. Oyama, et al., “Aging-associated alteration of subtelomeric methylation in Parkinson’s disease,” J. Gerontol. A. Biol. Sci. Med. Sci., 64, 949–955 (2009).CrossRefPubMedGoogle Scholar
  25. 25.
    P. Thomas, N. J. O’Callaghan, and M. Fenech, “Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer’s disease,” Mech. Ageing Dev., 129, 183–190 (2008).CrossRefPubMedGoogle Scholar
  26. 26.
    C. Cipriano, S. Tesei, M. Malavolta, et al., “Accumulation of cells with short telomeres is associated with impaired zinc homeostasis and inflammation in old hypertensive participants,” J. Gerontol. A. Biol. Sci. Med. Sci., 64, 745–751 (2009).CrossRefPubMedGoogle Scholar
  27. 27.
    P. Ilmonen, A. Kotrschal, and D. J. Penn, “Telomere attrition due to infection,” PLoS One, 3, 2143 (2008).CrossRefGoogle Scholar
  28. 28.
    J. J. Carreo, P. Stenvinkel, B. Fellstrom, et al., “Telomere attrition is associated with inflammation, low fetuin-A levels and high mortality in prevalent haemodialysis patients,” J. Int. Med., 263, 302–312 (2008).CrossRefGoogle Scholar
  29. 29.
    A. Aviv, “Telomeres and human aging: facts and fi bs,” Sci. Aging Knowl. Environ., 51, 43 (2004).Google Scholar
  30. 30.
    S. Kawanishi and O. Oikawa, “Mechanism of telomere shortening by oxidative stress,” Ann. NY Acad. Sci., 1019, 278–284 (2004).CrossRefPubMedGoogle Scholar
  31. 31.
    N. Sitte, G. Saretzki, and T. von Zglinicki, “Accelerated telomere shortening in fibroblasts after extended periods of confluency,” Free Radic. Biol. Med., 24, 885–893 (1998).CrossRefPubMedGoogle Scholar
  32. 32.
    T. von Zglinicki, C. Martin-Ruiz, and G. Saretzki, “Telomeres, cell senescence and human ageing,” Signal Transduct., 3, 103–114 (2005).CrossRefGoogle Scholar
  33. 33.
    S. Petersen, G. Saretzki, and T. von Zglinicki, “Preferential accumulation of single-stranded regions in telomeres of human fibroblasts,” Exp. Cell Res., 239, 152–160 (1998).CrossRefPubMedGoogle Scholar
  34. 34.
    T. Richter, G. Saretzki, G. Nelson, et al., “TRF2 overexpression diminishes repair of telomeric single-strand breaks and accelerates telomere shortening in human fibroblasts,” Mech. Ageing Dev., 128, 340–345 (2007).CrossRefPubMedGoogle Scholar
  35. 35.
    O. Beyne-Rauzy, C. Recher, N. Sastugue, et al., “Tumor necrosis factor alpha induces senescence and chromosomal instability in human leukemic cells,” Oncogene, 23, 7507–7516 (2004).CrossRefPubMedGoogle Scholar
  36. 36.
    A. A. Boldyrev, “Oxidative stress and the brain,” Soros. Obraz. Zh., No. 4, 21–28 (2001).Google Scholar
  37. 37.
    K. M. Dyumaev, T. A. Voronina, and L. D. Smirnov, Antioxidants in the Prophylaxis and Treatment of CNS Pathology, Institute of Biomedical Chemistry Press, Russian Academy of Medical Sciences, Moscow (1995).Google Scholar
  38. 38.
    I. A. Zavalishina, N. N. Yakhno, and S. I. Gavrilova, Neurodege nerative Diseases and Aging, A.A.A., Moscow (2001).Google Scholar
  39. 39.
    K. Koziorowski and J. Jasztal, “Factors which can play important role in pathogenesis of Parkinson disease,” Neurol. Neurochir. Pol., 33, 907–921 (1999).PubMedGoogle Scholar
  40. 40.
    D. J. Moore, V. L. Dawson, and T. M. Sawson, “Molecular pathophysiology of Parkinson’s disease,” Annu. Rev. Neurosci., 28, 57–87 (2005).CrossRefPubMedGoogle Scholar
  41. 41.
    B. Thomas and M. F. Beal, “Parkinson’s disease,” Hum. Mol. Genet., 16, 183–194 (2007).CrossRefGoogle Scholar
  42. 42.
    J. R. Vaughan, M. J. Farrer, Z. K. Wszolek, et al., “Sequencing of the alphasynuclein gene in a large series of cases of familial Parkinson’s disease fails to reveal any further mutations,” Hum. Mol. Genet., 7, 751–753 (1998).CrossRefPubMedGoogle Scholar
  43. 43.
    M. W. Fariss, C. B. Chan, M. Patel, et al., “Role of mitochondria in toxic oxidative stress,” Mol. Interv., 5, 94–111 (2005).CrossRefPubMedGoogle Scholar
  44. 44.
    M. Naoi and W. Maruyama, “Cell death of dopamine neurons in aging and Parkinson’s disease,” Mech. Ageing Dev., 111, 175–188 (1999).CrossRefPubMedGoogle Scholar
  45. 45.
    N. Ogawa and A. Mori, “Parkinson’s disease, dopamine and free radicals,” in: Oxidative Stress and Aging, R. G. Cutler (ed.), New York (1995), pp. 303–309.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. K. Kolyada
    • 1
  • A. M. Vaiserman
    • 1
  • D. S. Krasnenkov
    • 1
  • I. N. Karaban’
    • 1
  1. 1.Chebotarev Institute of GerontologyUkrainian National Academy of Medical SciencesKievUkraine

Personalised recommendations