Neuroscience and Behavioral Physiology

, Volume 46, Issue 3, pp 284–290 | Cite as

Brain Microglia and Microglial Markers

  • D. E. Korzhevskii
  • O. V. Kirik

Recent years have seen a continuing increase in interest in various aspects of the organization and functioning of microglia. However, data on contemporary immunocytochemical methods for detecting microglia are ambiguous and need to be made systematic. Attention in the present review is focused on microglial markers – proteins (Iba-1, CD11b, CD68, HLA-DR, and others) expressed by microgliocytes in normal conditions and on activation evoked by harmful factors. Characterization of markers and immunocytochemical microglial labeling methods is combined with analysis of reports on the origin and structural organization of microgliocytes.


microglia brain immunocytochemistry Iba-1 CD11b CD68 OX-42 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. K. Beletskii, A Method for Microscopic Studies of the Nervous System, Krest’yanskaya Gazeta, Moscow (1939).Google Scholar
  2. 2.
    V. K. Beletskii, “Neurology in health and disease,” in: A Handbook of Pathological Anatomy in Several Volumes, Medical Literature Press, Moscow (1963), Vol. II, pp. 55–82.Google Scholar
  3. 3.
    P. N. Ermokhin, Histopathology of the Central Nervous System: An Atlas of Photomicrographs, Meditsina, Moscow (1969).Google Scholar
  4. 4.
    O. V. Kirik, O. S. Alekseeva, A. N. Moskvin, and D. E. Korzhevskii, “Effects of hyperbaric oxygenation on the state of the subependymal microglia of the brain in rats,” Zh. Evolyuts. Biokhim., 50, No. 4, 312–314 (2014).Google Scholar
  5. 5.
    O. V. Kirik, E. G. Sukhorukova, O. S. Alekseeva, and D. E. Korzhevskii, “Subependymal microgliocytes of the III ventricle of the brain,” Morfologiya, 145, No. 3, 67–69 (2014).Google Scholar
  6. 6.
    O. V. Kirik, E. G. Sukhorukova, and D. E. Korzhevskii, “Calciumbinding protein Iba-1/AIF-1 in brain cells in the rat,” Morfologiya, 137, No. 2, 5–8 (2010).Google Scholar
  7. 7.
    D. E. Korzhevskii, “The tissue organization and development of the vascular plexus of the brain in humans,” Morfologiya, 113, No. 2, 105–114 (1998).Google Scholar
  8. 8.
    D. E. Korzhevskii, “Macrophages in the vascular plexus of the telencephalon in the human brain,” Morfologiya, 119, No. 1, 20–23 (2001).Google Scholar
  9. 9.
    D. E. Korzhevskii, O. V. Kirik, E. G. Sukhorukova, and T. D. Vlasov, “Structural organization of microgliocytes in the striatum after transient focal ischemia,” Morfologiya, 141, No. 2, 19–24 (2012).Google Scholar
  10. 10.
    D. E. Korzhevskii, O. V. Kirik, E. G. Sukhorukova, et al., “Studies of the spatial organization of astrocytes in the brain using confocal laser microscopy,” Morfologiya, 135, No. 3, 76–79 (2009).Google Scholar
  11. 11.
    D. E. Korzhevskii, O. V. Kirik, E. G. Sukhorukova, and M. A. Syrtsova, “Microglia in the substantia nigra of the brain in humans,” Med. Akad. Zh., 14, No. 4, 68–72 (2014).Google Scholar
  12. 12.
    D. E. Korzhevskii, M. V. Lentsman, O. V. Kirik, and V. A. Otellin, “Morphological types of activated microglia in the hippocampus seen after transient general cerebral ischemia,” Morfologiya, 142, No. 5, 30–33 (2012).Google Scholar
  13. 13.
    D. E. Korzhevskii, V. A. Otellin, A. A. Neokesariiskii, and N. G. Pavlova, “Structural organization of the forming human placenta,” Morfologiya, 128, No. 6, 60–62 (2005).Google Scholar
  14. 14.
    D. E. Korzhevskii, E. G. Sukhorukova E. G. Gilerovich, et al., “Advantages and disadvantages of zinc-ethanol-formaldehyde as a fixative for immunohistochemical studies and confocal laser microscopy,” Morfologiya, 143, No. 2, 81–85 (2013).Google Scholar
  15. 15.
    D. E. Korzhevskii, E. G. Sukhorukova E. G., and O. V. Kirik, “Use of immunocytochemical markers to detect activated microglia and macrophages in the brain,” in: Current Questions in Functional Interhemisphere Asymmetry and Neuroplasticity: Proc. All-Russ. Conf., Nauchnyi Mir, Moscow (2008), pp. 588–590.Google Scholar
  16. 16.
    I. V. Manzhulo, Neuroglial Interactions in the Mechanisms of Development of Pain and Therapeutic Analgesia in Rats: Auth. Abstr. Mast. Thesis in Biol. Sci., Vladivostok (2013).Google Scholar
  17. 17.
    V. A. Otellin and D. E. Korzhevskii, “Formation and structural organization of the barrier at the outer surface of the brain,” Morfologiya, 122, No. 6, 14–18 (2002).Google Scholar
  18. 18.
    E. G. Sukhorukova, M. S. Zakhryapin, N. N. Anichkov, and D. E. Korzhevskii, “Detection of microglia in brain preparations stored for prolonged periods in formalin solution,” Morfologiya, 142, No. 5, 32–35 (2012).Google Scholar
  19. 19.
    E. G. Sukhorukova, O. V. Kirik, and D. E. Korzhevskii, “Use of an immunohistochemical method to detect brain microglia in paraffin sections,” Byull. Eksperim. Biol., 149, No. 6, 709–712 (2010).CrossRefGoogle Scholar
  20. 20.
    L. I. Khozhai and V. A. Otellin, “Reactive changes in microglia in the rat neocortex and hippocampus after exposure to acute perinatal hypoxia,” Morfologiya, 143, No. 1, 23–27 (2013).Google Scholar
  21. 21.
    F. Alliott and I. Godin, “Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain,” Brain Res. Dev. Brain Res., 117, No. 2, 145–152 (1999).CrossRefGoogle Scholar
  22. 22.
    D. R. Beers, J. S. Henkel, Q. Xiao, et al., “Wild-type microglia extend survival in PU1 knockout mice with familial amyotrophic lateral sclerosis,” Proc. Natl. Acad. Sci. USA, 103, 16021–16026.Google Scholar
  23. 23.
    L. Benimetskaya, J. D. Loike, Z. Khaled, et al., “Mac-1 (CD11b/CD18) is an oligodeoxynucleotide-binding protein,” Nat. Med., 3, No. 4, 414–420 (1997).CrossRefPubMedGoogle Scholar
  24. 24.
    D. Boche, V. H. Perry, and J. A. Nicoll, “Review: activation patterns of microglia and their identification in the human brain,” Neuropathol. Appl. Neurobiol., 39, 3–18 (2013).CrossRefPubMedGoogle Scholar
  25. 25.
    J. G. Damoiseaux, E. A. Dopp, W. Calame, et al., “Rat macrophage lysosomal membrane antigen recognized by monoclonal antibody ED1,” Immunology, 83, 140–147 (1994).PubMedCentralPubMedGoogle Scholar
  26. 26.
    M. H. Deininger, R. Meyermann, and H. J. Schluesener, “The allograft inflammatory factor-1 family of proteins,” FEBS Lett., 514, 115–121 (2002).CrossRefPubMedGoogle Scholar
  27. 27.
    C. D. Dijkstra, E. A. Dopp, P. Joling, and G. Kraal, “The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3,” Immunology, 54, 589–599 (1985).PubMedCentralPubMedGoogle Scholar
  28. 28.
    C. D. Dijkstra, E. A. Dopp, T. K. Van der Burg, and J. G. Damoiseaux, “Monoclonal antibodies against rat macrophages,” J. Immunol. Meth., 174, 21–23 (1994).CrossRefGoogle Scholar
  29. 29.
    S. G. Elner, V. M. Elner, J. C. Nielsen, et al., “CD68 antigen expression by human retinal pigment epithelial cells,” Exp. Eye Res., 55, No. 1, 21–28 (1992).CrossRefPubMedGoogle Scholar
  30. 30.
    G. P. Fadini, R. Cappellari, M. Mazzucato, et al., “Monocyte-mac rophage polarization balance in pre-diabetic individuals,” Acta Diabetol., 50, No. 6, 977–982 (2013).CrossRefPubMedGoogle Scholar
  31. 31.
    B. Falini, L. Flenghi, S. Pileri, et al., “PG-M1: a new monoclonal anti body direct against a fixative-resistant epitope on the macrophage-restricted form of the CD68 molecule,” Am. J. Pathol., 142, No. 5, 1359–1372 (1993).PubMedCentralPubMedGoogle Scholar
  32. 32.
    A. Flugel, M. Bradi, G. W. Kreutzberg, and M. B. Graeber, “Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy,” J. Neurosci. Res., 66, No. 1, 74–82 (2001).CrossRefPubMedGoogle Scholar
  33. 33.
    F. Ginhoux, M. Greater, M. Leboeuf, et al., “Fate mapping analysis reveals that adult microglia derive from primitive macrophages,” Science, 330, 841–845 (2010).PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    M. B. Graeber and W. J. Streit, “Microglia: biology and pathology,” Acta Neuropathol., 119, 89–105 (2010).CrossRefPubMedGoogle Scholar
  35. 35.
    M. Greater and M. Merad, “Regulation of microglia development and homeostasis,” Glia, 61, 121–127 (2013).CrossRefGoogle Scholar
  36. 36.
    G. J. Harry and A. D. Kratt, “Microglia in the developing brain: a potential target with lifetime effects,” Neurotoxicology, 33, 191–206 (2012).PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    C. L. Holness and D. L. Simmons, “Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins,” Blood, 81, 1607–1613 (1993).PubMedGoogle Scholar
  38. 38.
    R. J. Horvath, E. A. Romero-Sandoval, and J. A. De Leo, “Inhibition of microglial P2X4 receptor attenuates morphine tolerance, Iba1, GFAP and mu opioid receptor protein expression while enhancing perivascular microglial ED2,” Pain, 150, No. 3, 401–413 (2010).PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Y. Imai, I. Ibata, D. Ito, et al., “A novel gene Iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage,” Biochem. Biophys. Res. Commun., 224, 855–862 (1996).CrossRefPubMedGoogle Scholar
  40. 40.
    Y. Imai and S. Kohsaka, “Intracellular signaling in M-CSF-induced microglia activation: role of Iba1,” Glia, 40, 164–174 (2002).CrossRefPubMedGoogle Scholar
  41. 41.
    D. Ito, Y. Imai, K. Ohsawa, et al., “Microglia-specific localization of a novel calcium binding protein, Iba1,” Brain Res. Mol. Brain Res., 57, 1–9, (1998).CrossRefPubMedGoogle Scholar
  42. 42.
    C. Kaur and E.-A. Ling, “Increased expression of transferrin receptors and iron in ameboid microglial cells in postnatal rats following an exposure to hypoxia,” Neurosci. Lett., 262, 183–186 (1999).CrossRefPubMedGoogle Scholar
  43. 43.
    C. Kaur, G. Rathnasamy, and E.-A. Ling, “Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina,” J. Neuroim. Pharmacol., 8, 66–78 (2013).CrossRefGoogle Scholar
  44. 44.
    K. Kawai, N. H. Tsuno, M. Matsuhashi, et al., “CD11b-mediated migratory property of peripheral blood B cell,” J. Allergy Clin. Immunol., 116, No. 1, 192–197 (2005).CrossRefPubMedGoogle Scholar
  45. 45.
    C. Kohler, “Allograft inflammatory factor-1/Ionized calcium binding adapter molecule 1 is specifically expressed by most subpopulations of macrophages and spermatids in testis,” Cell Tissue Res., 33, 291–302 (2007).CrossRefGoogle Scholar
  46. 46.
    G. W. Kreutzberg, “Microglia: a sensor for pathological events in the CNS,” Trends Neurosci., 19, No. 8, 312–318 (1996).CrossRefPubMedGoogle Scholar
  47. 47.
    R. Ladeby, M. Wirenfeldt, D. Garcia-Ovejero, et al., “Microglial cell population dynamics in the injured adult central nervous system,” Brain Res. Brain Res. Rev., 48, No. 2, 196–206 (2005).CrossRefPubMedGoogle Scholar
  48. 48.
    E.-A. Ling, C. Kaur, and J. Lu, “Origin, nature and some functional considerations of intraventricular macrophages, with special reference to the epiplexus cells,” Microsc. Res. Tech., 41, No. 1, 235–342 (1998).CrossRefGoogle Scholar
  49. 49.
    M. MacPherson, H. S. Lek, A. Prescott, and S. C. Fagerholm, “A systemic lupus erythematosus-associated R77H substitution in the CD11b chain of the Mac-1 integrin compromises leukocyte adhesion and phagocytosis,” J. Biol. Chem., 286, 17,303–17,310 (2011).CrossRefGoogle Scholar
  50. 50.
    S. A. Marshall, J. A. McClain, M. L. Kelso, et al., “Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: The importance of microglia phenotype,” Neurobiol. Dis., 54, 239–251 (2013).PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    S. M. McKay, D. J. Brooks, P. Hu, and E. M. McLachlan, “Distinct types of microglial activation in white and grey matter of rat lumbosacral cord after mid-thoracic spinal transection,” J. Neuropathol. Exp. Neurol., 66, 698–710 (2007).CrossRefPubMedGoogle Scholar
  52. 52.
    T. Morioka, A. N. Kalehua, and W. J. Streit, “Progressive expression of immunomolecules on microglial cells in rat dorsal hippocampus following transient forebrain ischemia,” Acta Neuropathol., 83, No. 2, 149–157 (1992).CrossRefPubMedGoogle Scholar
  53. 53.
    H. P. Ng, S. C. Chiang, Y. Chi, and S. T. Lee, “Identification of macrosialin (CD68) on the surface of host macrophages as the receptor for the intercellular adhesive molecule (ICAM-L) of Leishmania amazonensis,” Int. J. Parasitol., 39, 1539–1550 (2009).CrossRefPubMedGoogle Scholar
  54. 54.
    K. Osawa, Y. Imai, H. Kanazawa, et al., “Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia,” J. Cell Sci., 133, 3073–3084 (2000).Google Scholar
  55. 55.
    K. Osawa, Y. Imai, Y. Sasaki, and S. Kohsaka, “Microglia/macrophages-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity,” J. Neurochem., 88, 844–856 (2004).CrossRefGoogle Scholar
  56. 56.
    G. D. Ross, “Role of the lectin domain of Mac-1/CR3 (CD11b/ CD18) in regulating intercellular adhesion,” Immunol. Res, 25, No. 3, 219–227 (2002).CrossRefPubMedGoogle Scholar
  57. 57.
    G. D. Ross and V. Vetvicka, “CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multiple ligand specificities and functions,” Clin. Exp. Immunol., 92, 181–184 (1993).PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Y. Sasaki, K. Ohsawa, H. Kanazawa, et al., “Iba1 is an actin-crosslinking protein in macrophage/microglia,” Biochem. Biophys. Res. Commun., 286, 292–297 (2001).CrossRefPubMedGoogle Scholar
  59. 59.
    A. Schuitemaker, T. F. Van der Doef, R. Boellard, et al., “Microglia activation in healthy aging,” Neurobiol. Aging, 33, 1067–1072 (2012).CrossRefPubMedGoogle Scholar
  60. 60.
    C. M. Shikuma, L. M. Gangcuangco, D. A. Killebrew, et al., “The role of HIV and monocytes/macrophages in adipose tissue biology,” J. Acquir. Imm. Defic. Syndr., 65, No. 2, 151–159 (2014).CrossRefGoogle Scholar
  61. 61.
    Y. J. Shin, J. M. Park, J. M. Cho, et al., “Induction of vascular endothelial growth factor receptor-3 expression in perivascular cells of the ischemic core following focal cerebral ischemia in rats,” Acta Histochem., 115, No. 2, 170–177(2013).CrossRefPubMedGoogle Scholar
  62. 62.
    C. Smith, S. M. Gentleman, P. D. Leclerq, et al., “The inflammatory response in humans after traumatic brain injury,” Neuropathol. Appl. Neurobiol., 39, 654–666 (2013).CrossRefPubMedGoogle Scholar
  63. 63.
    C. Sobin, M. G. Montoya, N. Parisi, et al., “Microglial disruption in young mice with early chronic lead exposure,” Toxicol. Lett., 220, 44–52 (2013).PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    L. Song, C. Lee, and C. Schindler, “Deletion of the murine scavenger receptor CD68,” J. Lipid Res., 52, 1542–1550 (2011).PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    W. J. Streit, N. W. Sammons, A. J. Kuhns, and D. L. Sparks, “Dystrophic microglia in the aging human brain,” Glia, 45, 208–212 (2004).CrossRefPubMedGoogle Scholar
  66. 66.
    K. Suzuki, G. Sugihara, Y. Ouchi, et al., “Microglial activation in young adults with autism spectrum disorder,” JAMA Psychiatry, 70, 49–58 (2013).CrossRefPubMedGoogle Scholar
  67. 67.
    R. Todd, “The continuing saga of complement receptor type 3 (CR3),” J. Clin. Invest., 98, No. 1, 1–2 (1996).PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    M. Tremblay, B. Stevens, A. Sierra, et al., “The role of microglia in the healthy brain,” J. Neurosci., 31, 16,064–16,069 (2011).CrossRefGoogle Scholar
  69. 69.
    M. M. Varnum and T. Ikezu, “The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain,” Arch. Immunol. Ther. Exp., 60, 251–266 (2012).CrossRefGoogle Scholar
  70. 70.
    H. Wake, A. J. Moorhouse, S. Jinno, et al., “Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals,” J. Neurosci., 29, 3974–3980 (2009).CrossRefPubMedGoogle Scholar
  71. 71.
    M. Wojtera, T. Sobow, I. Kłoszewska, et al., “Expression of immunohistochemical markers on microglia in Creutzfeldt-Jakob disease and Alzheimer’s disease: morphometric study and review of the literature,” Folia Neuropathol., 50, No. 1, 74–84 (2012).PubMedGoogle Scholar
  72. 72.
    M. Yamada, K. Ohsawa, Y. Imai, et al., “x-Ray structure of the microglia/ macrophage-specific protein Iba1 from human and mouse demonstrate novel molecular conformation change induced by calcium binding,” J. Mol. Biol., 364, 449–457 (2006).CrossRefPubMedGoogle Scholar
  73. 73.
    M.-H. Yi, E. Zhang, J. W. Kang, et al., “Expression of CD200 in alternative activation of microglia following an excitotoxic lesion in the mouse hippocampus,” Brain Res., 1481, 90–96 (2012).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratory for the Functional Morphology of the Central and Peripheral Nervous System, Department of General and Special Morphology, Research Institute of Experimental Medicine, North-Western BranchRussian Academy of Medical SciencesSt. PetersburgRussia

Personalised recommendations