Neuroscience and Behavioral Physiology

, Volume 46, Issue 2, pp 138–145 | Cite as

The Role of Dopamine in Controlling Retinal Photoreceptor Function in Vertebrates


Many and deep cyclical changes in measures of retinal functioning during the 24-h daily cycle are to a significant extent determined by the actions of two neuromodulators – melatonin and dopamine. Dopamine and melatonin form a reciprocal pair mutually inhibiting each other’s synthesis, and are released into the intercellular space of the retina essentially in contraphase. Dopamine is synthesized cyclically in a special population of dopaminergic amacrine cells and its content in the retina increases in the daytime and decreases at night. Like melatonin, dopamine acts on all the main cell types in the outer and inner layers of the retina. Excitation of D1- and D2-like receptors by dopamine regulates protein kinase A activity and the intracellular cAMP concentration, and can also trigger other regulatory pathways, including activation of phospholipase C. In photoreceptors, dopamine acting via D2-like dopamine receptors decreases the cAMP concentration, suppresses melatonin synthesis, and regulates the conductivity of gap junctions between rods and cones depending on the phase of the light cycle. Decreasing the cAMP concentration, dopamine may regulate the phototransduction cascade and other cellular functions in photoreceptors. One of the aims of this review is to address these possibilities.


dopamine dopamine receptors cAMP retina photoreceptors circadian rhythms protein kinase A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. A. Astakhova, S. V. Kapitskii, V. I. Govardovskii, and M. L. Firsov, “Cyclic AMP as a regulator of the phototransduction cascade,” Ros. Fiziol. Zh., 98, No. 11, 1273–1285 (2012).Google Scholar
  2. 2.
    A. Akopian and P. Witovsky, “D2 dopamine receptor-mediated inhibition of a hyperpolarization-activated current in rod photoreceptors,” J. Neurophysiol., 76, No. 3, 1828–1835 (1996).PubMedGoogle Scholar
  3. 3.
    F. Amenta, A. Ricci, S. K. Tayebati, and D. Zaccheo, “The peripheral dopaminergic system: morphological analysis, functional and clinical applications,” Ital. J. Anat. Embryol., 107, No. 3, 145–167 (2002).PubMedGoogle Scholar
  4. 4.
    L. A. Astakhova, E. V. Samoiliuk, V. I. Govardovskii, and M. L. Firsov, “cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade,” J. Gen. Physiol., 140, No. 4, 421–433 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    J. M. Beaulieu and R. R. Gainetdinov, “The physiology, signaling, and pharmacology of dopamine receptors,” Pharmacol. Rev., 63, No. 1, 182–187 (2011).PubMedCrossRefGoogle Scholar
  6. 6.
    J. C. Besharse, D. A. Dunis, and P. M. Iuvone, “Regulation and possible role of serotonin N-acetyltransferase in the retina,” Fed. Proc., 43, No. 12, 2704–2708 (1984).PubMedGoogle Scholar
  7. 7.
    J. C. Besharse, M. Zhuang, K. Freeman, and J. Fogerty, “Regulation of photoreceptor Per1 and Per2 by light, dopamine and a circadian clock,” Eur. J. Neurosci., 20, No. 1, 167–174 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    B. Biedermann, E. Frohlich, J. Grosche, et al., “Mammalian Muller (glial) cells express functional D2 dopamine receptors,” Neuroreport, 6, No. 4, 609–612 (1995).Google Scholar
  9. 9.
    B. Bjelke, M. Goldstein, B. Tinner, et al., “Dopaminergic transmission in the rat retina: evidence for volume transmission,” J. Chem. Neuroanat., 12, No. 1, 37–50 (1996).PubMedCrossRefGoogle Scholar
  10. 10.
    S. A. Blooffi eld and B. Volgyi, “The diverse functional roles and regulation of neuronal gap junctions in the retina,” Nat. Rev. Neurosci., 10, No. 7, 496–506 (2009).Google Scholar
  11. 11.
    R. Brandstatter, “Encoding time of day and time of year by the avian circadian system,” J. Neuroendocrinol., 15, No. 4, 398–404 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    J. H. Brown and M. H. Makman, “Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3’:5’-cyclic monophosphate formation in intact retina,” Proc. Natl. Acad. Sci. USA, 69, No. 3, 539–543 (1972).PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    B. Burnside, M. Evans, R. T. Fletcher, and G. J. Chader, “Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3’,5’-monophosphate,” J. Gen. Physiol., 79, No. 5, 759–774 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    G. M. Cahill and J. C. Besharse, “Light-sensitive melatonin synthesis by Xenopus photoreceptors after destruction of the inner retina,” Vis. Neurosci., 8, No. 5, 487–490 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    G. M. Cahill, M. S. Grace, and J. C. Besharse, “Rhythmic regulation of retinal melatonin: metabolic pathways, neurochemical mechanisms, and the ocular circadian clock,” Cell Mol. Neurobiol., 11, No. 5, 529–560 (1991).PubMedCrossRefGoogle Scholar
  16. 16.
    L. S. Chun, R. B. Free, T. B. Doyle, et al., “Dl-D2 dopamine receptor synergy promotes calcium signaling via multiple mechanisms,” Mol. Pharmacol., 84, No. 2, 190–200 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    A. I. Cohen, R. D. Todd, S. Harmon, and K. L. O’Malley, “Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase,” Proc. Natl. Acad. Sci. USA, 89, No. 24, 12,093–12,097 (1992).CrossRefGoogle Scholar
  18. 18.
    D. M. Dacey, “The dopaminergic amacrine cell,” J. Comp. Neurol., 301, No. 3, 461–489 (1990).PubMedCrossRefGoogle Scholar
  19. 19.
    A. Dearry and B. Burnside, “Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: II. Modulation by gamma-aminobutyric acid and serotonin,” J. Neurochem., 46, No. 4, 1022–1031 (1986).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Dearry, J. L. Edelman, S. Miller, and B. Burnside, “Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors,” J. Neurochem., 54, No. 4, 1367–1378 (1990).PubMedCrossRefGoogle Scholar
  21. 21.
    A. Dearry, P. Falardeau, C. Shores, and M. G. Caron, “D2 dopamine receptors in the human retina: cloning of cDNA and localization of mRNA,” Cell Mol. Neurobiol., 11, No. 5, 437–453 (1991).PubMedCrossRefGoogle Scholar
  22. 22.
    A. Derouiche and E. Asan, “The dopamine D2 receptor subfamily in rat retina: ultrastructural immunogold and in situ hybridization studies,” Eur. J. Neurosci., 11, No. 4, 1391–1402 (1999).PubMedCrossRefGoogle Scholar
  23. 23.
    M. T. Do and K. W. Yau, “Intrinsically photosensitive retinal ganglion cells,” Physiol. Rev., 90, No. 4, 1547–1581 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    R. H Douglas, H. J. Wagner, M. Zaunreiter, et al., “The effect of dopamine depletion on light-evoked and circadian retinomotor movements in the teleost retina,” Vis. Neurosci., 9, No. 3–4, 335–343 (1992).PubMedCrossRefGoogle Scholar
  25. 25.
    J. E. Dowling and R. Ehinger, “Synaptic organization of the aminecontaining interplexiform cells of the goldfi sh and Cebus monkey retinas,” Science, 188, No. 4185, 270–273 (1975).Google Scholar
  26. 26.
    A. Egerton, M. A. Mehta, A. J. Montgomery, et al., “The dopaminergic basis of human behaviors: A review of molecular imaging studies,” Neurosci. Biobehav. Rev, 33, No. 7, 1109–1132 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    E. V. Famiglietti, Jr. and H. Kolb, “Structural basis for ON and OFFcenter responses in retinal ganglion cells,” Science, 194, No. 4261, 193–195 (1976).Google Scholar
  28. 28.
    A. Feigenspan, S. Gustincich, B. P. Bean, and E. Raviola, “Spontaneous activity of solitary dopaminergic cells of the retina,” J. Neurosci., 18, No. 17, 6776–6789 (1998).PubMedGoogle Scholar
  29. 29.
    C. A. Gilson, N. Ackland, and B. Burnside, “Regulation of reactivated elongation in lysed cell models of teleost retinal cones by cAMP and calcium,” J. Cell Biol., 102, No. 3, 1047–1059 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    J. A. Gingrich and M. G. Caron, “Recent advances in the molecular biology of dopamine receptors,” Annu. Rev. Neurosci., 16, 299–321 (1993).PubMedCrossRefGoogle Scholar
  31. 31.
    D. A. Golombek and R. E. Rosenstein, “Physiology of circadian entrainment,” Physiol. Rev., 90, No. 3, 1063–1102 (2010).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Hasbi, B. F. O’Dowd, and S. R. George, “Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms,” Curr. Opin. Pharmacol., 10, No. 1, 93–99 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    A. Hasbi, B. F. O’Dowd, and S. R. George, “Dopamine Dl-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance,” Mol. Brain, 4, 26–31 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    M. Hasegawa and G. M. Cahill, “Cyclic AMP resets the circadian clock in cultured Xenopus retinal photoreceptor layers,” J. Neurochem., 70, No. 4, 1523–1531 (1998).PubMedCrossRefGoogle Scholar
  35. 35.
    M. Hasegawa and G. M. Cahill, “A role for cyclic AMP in entrainment of the circadian oscillator in Xenopus retinal photoreceptors by dopamine but not by light,” J. Neurochem., 72, No. 5, 1812–1820 (1999).PubMedCrossRefGoogle Scholar
  36. 36.
    H. Hirasawa, R. A. Betensky, and E. Raviola, “Corelease of dopamine and GABA by a retinal dopaminergic neuron,” J. Neurosci., 32, No. 38, 13,281–13,291 (2012).CrossRefGoogle Scholar
  37. 37.
    P. M. Iuvone and J. C. Besharse, “Regulation of indoleamine N-acetyltransferase activity in the retina: effects of light and dark, protein synthesis inhibitors and cyclic nucleotide analogs,” Brain Res., 273, No. 1, 111–119 (1983).PubMedCrossRefGoogle Scholar
  38. 38.
    T. N. Ivanova, A. L. Alonso-Gomez, and P. M. Iuvone, “Dopamine D4 receptors regulate intracellular calcium concentration in cultured chicken cone photoreceptor cells: relationship to dopamine receptor- mediated inhibition of cAMP formation,” Brain Res., 1207, 111–119 (2008).PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    T. N. Ivanova and P. M. Iuvone, “Circadian rhythm and photic control of cAMP level in chick retinal cell cultures: a mechanism for coupling the circadian oscillator to the melatonin-synthesizing enzyme, arylalkylamine N-acetyltransferase, in photoreceptor cells,” Brain Res., 991, No. 1–2, 96–103 (2003).PubMedCrossRefGoogle Scholar
  40. 40.
    C. R. Jackson, S. S. Chaurasia, H. Zhou, et al., “Essential roles of dopamine D4 receptors and the type 1 adenylyl cyclase in photic control of cyclic AMP in photoreceptor cells,” J. Neurochem., 109, No. 1, 148–157 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    F. Kawai, M. Horiguchi, and E. Miyachi, “Dopamine modulates the voltage response of human rod photoreceptors by inhibiting the h current,” Invest. Ophthalmol. Vis. Sci., 52, No. 7, 4113–4117 (2011).PubMedCrossRefGoogle Scholar
  42. 42.
    J. W. Kebabian and D. B. Calne, “Multiple receptors for dopamine,” Nature, 277, No. 5692, 93–96 (1979).Google Scholar
  43. 43.
    P. W. Keeley and B. E. Reese, “Morphology of dopaminergic amacrine cells in the mouse retina: independence from homotypic interactions,” J. Comp. Neurol., 518, No. 8, 1220–1231 (2010).PubMedPubMedCentralGoogle Scholar
  44. 44.
    A. E. Kiselevsky, S. J. Mulligan, C. Altier, et al., “D1 receptors physically interact with N-type calcium channels to regulate channel distribution and dendritic calcium entry,” Neuron, 58, No. 4, 557–570 (2008).Google Scholar
  45. 45.
    A. E. Kiselevsky and G. W. Zamponi, “D2 dopamine receptors interact directly with N-type calcium channels and regulate channel surface expression levels,” Channels (Austin), 2, No. 4, 269–277 (2008).Google Scholar
  46. 46.
    H. Kolb, N. Cuenca, H. H. Wang, and L. Dekorver, “The synaptic organization of the dopaminergic amacrine cell in the cat retina,” J. Neurocytol., 19, No. 3, 343–366 (1990).PubMedCrossRefGoogle Scholar
  47. 47.
    W. Kolbinger, D. Wagner, and H. J. Wagner, “Control of rod retinomotor movements in teleost retinae: the role of dopamine in mediating light-dependent and circadian signals,” Cell Tissue Res., 285, No. 3, 445–451 (1996).PubMedCrossRefGoogle Scholar
  48. 48.
    D. Krizaj, “Mesopic state: cellular mechanisms involved in pre- and post-synaptic mixing of rod and cone signals,” Microsc. Res. Tech., 50, No. 5, 347–359 (2000).PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    D. Krizaj, R. Gabriel, W. G. Owen, and P. Witkovksy, “Dopamine D2 receptor-mediated modulation of rod-cone coupling in the Xenopus retina,” J. Comp. Neurol., 398, No. 4, 529–538 (1998).PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    R. C. Kubrusly, M. C. Da Cunha, R. A. Reis, et al., “Expression of fun ctional receptors and transmitter enzymes in cultured Muller cells,” Brain Res., 1038, No. 2, 141–149 (2005).PubMedCrossRefGoogle Scholar
  51. 51.
    R. C. Kubrusly, M. Z. Guimaraes, A. P. Vieira, et al., “L-DOPA supply to the neuro retina activates dopaminergic communication at the early stages of embryonic development,” J. Neurochem., 86, No. 1, 45–54 (2003).PubMedCrossRefGoogle Scholar
  52. 52.
    F. J. Lee, S. Xue, L. Pei, et al., “Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor,” Cell, 111, No. 2, 219–230 (2002).Google Scholar
  53. 53.
    S. P. Lee, C. H. So, A. J. Rashid, et al., “Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal,” J. Biol. Chem., 279, No. 34, 35,671–35,678 (2004).CrossRefGoogle Scholar
  54. 54.
    H. Li, A. Z. Chuang, and J. O’Brien, “Photoreceptor coupling is controlled by connexin 35 phosphorylation in zebrafish retina,” J. Neurosci., 29, No. 48, 15,178–15,186 (2009).CrossRefGoogle Scholar
  55. 55.
    H. Li, Z. Zhang, M. R. Blackburn, et al., “Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina,” J. Neurosci., 33, No. 7, 3135–3150 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    F. Liu, Q. Wan, Z. B. Pristupa, et al., “Direct protein-protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors,” Nature, 403, No. 6767, 274–280 (2000).Google Scholar
  57. 57.
    D. G. McMahon, P. M. Iuvone, and G. Tosini, “Circadian organization of the mammalian retina: From gene regulation to physiology and diseases,” Progr. Retin. Eye Res., 39, 58–76 (2014).CrossRefGoogle Scholar
  58. 58.
    C. Missale, S. R. Nash, S. W. Robinson, et al., “Dopamine receptors: from structure to function,” Physiol. Rev., 78, No. 1, 189–225 (1998).PubMedGoogle Scholar
  59. 59.
    C. Mora-Ferrer, S. Yazulla, K. M. Studholme, and M. Haak-Frendscho, “Dopamine D1-receptor immunolocalization in goldfish retina,” J. Comp. Neurol., 411, No. 4, 705–714 (1999).PubMedCrossRefGoogle Scholar
  60. 60.
    Z. Muresan and J. Besharse, “D2-like dopamine receptors in amphibian retina: localization with fl uorescent ligands,” J. Comp. Neurol., 13, No. 2, 149–160 (1993).CrossRefGoogle Scholar
  61. 61.
    J. Nguyen-Legros, A. Simon, I. Caille, and B. Bloch, “Immunocytochemical localization of dopamine D1 receptors in the retina of mammals,” Vis. Neurosci., 14, No. 3, 545–551 (1997).PubMedCrossRefGoogle Scholar
  62. 62.
    J. Nguyen-Legros, C. Versauz-Botteri, and P. Vernier, “Dopamine receptor localization in the mammalian retina,” Mol. Neurobiol., 19, No. 3, 181–204 (1999).PubMedCrossRefGoogle Scholar
  63. 63.
    A. Nieoullon, “Dopamine and the regulation of cognition and attention,” Progr. Neurobiol., 67, No. 1, 53–83 (2002).CrossRefGoogle Scholar
  64. 64.
    A. Nieoullon and A. Coquerel, “Dopamine: a key regulator to adapt action, emotion, motivation and cognition,” Curr. Opin. Neurol., 16, Supplement 2, S3–S9 (2003).Google Scholar
  65. 65.
    I Nir, J. M. Harrison, R. Haque, et al., “Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors,” J. Neurosci., 22, No. 6, 2063–2073 (2002).PubMedGoogle Scholar
  66. 66.
    J. Z. Nowak, M. Przybysz, and E. Zurawska, “The melatonin generating system in the rat retina and pineal gland: effect of single and repeated electroconvulsive shock (ECS),” Pol. J. Pharmacol. Pharm., 40, No. 6, 573–584 (1988).PubMedGoogle Scholar
  67. 67.
    J. Z. Nowak, Z. Urawska, and J. Zawilska, “Melatonin and its generating system in vertebrate retina: circadian rhythm, effect of environmental lighting and interaction with dopamine,” Neurochem. Int., 14, No. 4, 397–406 (1989).PubMedCrossRefGoogle Scholar
  68. 68.
    M. J. Paglia, H. Mou, and R. H. Cote, “Regulation of photoreceptor phosphodiesterase (PDE6) by phosphorylation of its inhibitory gamma subunit re-evaluated,” J. Biol. Chem., 277, No. 7, 5017–5023 (2002).PubMedCrossRefGoogle Scholar
  69. 69.
    S. F. Pang, H. S. Yu, H. C. Suen, and G. M. Brown, “M Melatonin in the retina of rats: a diurnal rhythm,” J. Endocrinol., 87, No. 1, 89–93 (1980).PubMedCrossRefGoogle Scholar
  70. 70.
    S Patel, K. L. Chapman, D. Marston, et al., “Pharmacological and functional characterisation of dopamine D4 receptors in the rat retina,” Neuropharmacology, 44, No. 8, 1038–1046 (2003).PubMedCrossRefGoogle Scholar
  71. 71.
    M. L. Perrault, A. Hasbi, M. Alijaniaram, et al., “The dopamine DID2 receptor heteromer localizes in dynorphin/enkephalin neurons: increased high affinity state following amphetamine and in schizophrenia,” J. Biol. Chem., 285, No. 47, 36,625–36,634 (2010).CrossRefGoogle Scholar
  72. 72.
    M. E. Pierce and J. C. Besharse, “Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length,” J. Gen. Physiol., 86, No. 5, 671–689 (1985).PubMedCrossRefGoogle Scholar
  73. 73.
    E. Popova, “Role of dopamine in distal retina,” J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol., 200, No. 5, 333–358 (2014).PubMedCrossRefGoogle Scholar
  74. 74.
    E. Popova and P. Kupenova, “Effects of dopamine receptor blockade on the intensity-response function of ERG b- and d-waves in dark adapted eyes,” Vision Res., 88, 22–29 (2013).PubMedCrossRefGoogle Scholar
  75. 75.
    K. Porrello and B. Burnside, “Regulation of reactivated contraction in teleost retinal cone models by calcium and cyclic adenosine monophosphate,” J. Cell Biol., 98, No. 6, 2230–2238 (1984).PubMedCrossRefGoogle Scholar
  76. 76.
    M. Puopolo, S. E. Hochstetler, S. Gustincich, et al., “Extrasynaptic release of dopamine in a retinal neuron: activity dependence and transmitter modulation,” Neuron, 30, No. 1, 211–255 (2001).Google Scholar
  77. 77.
    Z. X. Queen, R. Fertel, N. H. Neff, and M. Hadjiconstantinou, “Pharmacological characterization of rat retinal dopamine receptors,” J. Pharmacol. Exp. Ther., 248, No. 2, 621–625 (1989).Google Scholar
  78. 78.
    C. Ribelayga, Y. Cao, and S. C. Mangel, “The circadian clock in the retina controls rod-cone coupling,” Neuron, 59, No. 5, 790–801 (2008).Google Scholar
  79. 79.
    C. Ribelayga and S. C. Mangel, “Identification of a circadian clock-controlled neural pathway in the rabbit retina,” PLoS One, 5, No. 6, e11020 (2010).Google Scholar
  80. 80.
    B. Rohrer and W. K. Stell, “Localization of putative dopamine D2-like receptors in the chick retina, using in situ hybridization and immunocytochemistry,” Brain Res., 695, No. 2, 110–116 (1995).PubMedCrossRefGoogle Scholar
  81. 81.
    A. Sahu, K. R. Tyeryar, H. O. Vongtau, et al., “D5 dopamine receptors are required for dopaminergic activation of phospholipase C,” Mol. Pharmacol., 75, No. 3, 447–453 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    C. Savy, F. Moussafi , J. Durand, et al., “Distribution and spatial geometry of dopamine interplexiform cells in the retina. II. External arborizations in the adult rat and monkey,” J. Comp. Neurol., 355, No. 3, 392–404 (1995).PubMedCrossRefGoogle Scholar
  83. 83.
    T. Schneider and E. Zrenner, “Effects of D-1 and D-2 dopamine antagonists on ERG and optic nerve response of the cat,” Exp. Eye Res., 52, No. 4, 425–430 (1991).PubMedCrossRefGoogle Scholar
  84. 84.
    C. H. So, V. Verma, M. Alijuaniaram, et al., “Calcium signaling by dopamine D5 receptor and D5-D2 receptor hetero-oligomers occurs by a mechanism distinct from that for dopamine Dl-D2 receptor hetero- oligomers,” Mol. Pharmacol., 75, No. 4, 843–854 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    S. L. Stella, Jr. and W. B. Thoreson, “Differential modulation of rod and cone calcium currents in tiger salamander retina by D2 dopamine receptors and cAMP,” Eur. J. Neurosci., 12, No. 10, 3537–3548 (2000).PubMedCrossRefGoogle Scholar
  86. 86.
    G. Tosini, C. Bertolucci, and A. Foa, “The circadian system of reptiles: a multioscillatory and multiphotoreceptive system,” Physiol. Behav., 72, No. 4, 461–471 (2001).PubMedCrossRefGoogle Scholar
  87. 87.
    G. Tosini, S. S. S. Chaurasia, and I. P. Michael, “Regulation of arylalkylamine N-acetyltransferase (AANAT) in the retina,” Chronobiol. Int., 23, No. 1–2, 381–391 (2006).PubMedCrossRefGoogle Scholar
  88. 88.
    G. Tosini and C. Fukuhara, “Photic and circadian regulation of retinal melatonin in mammals,” J. Neuroendocrinol., 15, No. 4, 364– 369 (2003).PubMedCrossRefGoogle Scholar
  89. 89.
    G. Tosini, N. Pozdeyev, K. Sakamoto, and P. M. Iuvone, “The circadian clock system in the mammalian retina,” Bioessays, 30, No. 7, 624–633 (2008).Google Scholar
  90. 90.
    V. T. Tran and M. Dickman, “Differential localization of dopamine D1 and D2 receptors in rat retina,” Invest. Ophthalmol. Vis. Sci., 33, No. 5, 1620–1626 (1992).PubMedGoogle Scholar
  91. 91.
    S. H. Tsang, M. L. Woodruff, K. M. Janisch, et al., “Removal of phosphorylation sites of gamma subunit of phosphodiesterase 6 alters rod light response,” J. Physiol., 579, No. 2, 303–312 (2007).PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    D. Vallone, R. Picetti, and E. Borrelli, “Structure and function of dopamine receptors,” Neurosci. Biobehav. Rev., 24, No. 1, 125–132 (2000).PubMedCrossRefGoogle Scholar
  93. 93.
    C. Versaux-Botteri, J. B. Gibert, J. Nguyen-Legros, and P. Vernier, “Molecular identifi cation of a dopamine D1b receptor in bovine retinal pigment epithelium,” Neurosci. Lett., 237, No. 1, 9–12 (1997).PubMedCrossRefGoogle Scholar
  94. 94.
    M. L. Veruki, “Dopaminergic neurons in the rat retina express dopamine D2/3 receptors,” Eur. J. Neurosci., 9, No. 5, 1096–1100 (1997).PubMedCrossRefGoogle Scholar
  95. 95.
    M. L. Veruki and H. Wassle, “Immunohistochemical localization of dopamine D1 receptors in rat retina,” Eur. J. Neurosci., 8, No. 11, 2286–2297 (1996).PubMedCrossRefGoogle Scholar
  96. 96.
    T. Vuvani, M. Geffard, P. Denis, et al., “Radioimmunoligand characterization and immunohistochemical localization of dopamine D2 receptors on rods in the rat retina,” Brain Res., 614, No. 1–2, 57–64 (1993).CrossRefGoogle Scholar
  97. 97.
    H. J. Wagner, B. G. Luo, M. A. Ariano, et al., “Localization of D2 dopamine receptors in vertebrate retinae with anti-peptide antibodies,” J. Comp. Neurol., 331, No. 4, 469–481 (1993).PubMedCrossRefGoogle Scholar
  98. 98.
    A. F. Wiechmann, D. Bok, and J. Horwitz, “Melatonin-binding in the frog retina: autoradiographic and biochemical analysis,” Invest. Ophthalmol. Vis. Sci., 27, No. 2, 153–163 (1986).PubMedGoogle Scholar
  99. 99.
    A. F. Wiechmann and D. M. Sherry, “Role of melatonin and its receptors in the vertebrate retina,” Int. Rev. Cell Mol. Biol., 300, 211–242 (2013).PubMedCrossRefGoogle Scholar
  100. 100.
    P. Witkovsky, “Dopamine and retinal function,” Doc. Ophthalmol., 108, No. 1, 17–40 (2004).PubMedCrossRefGoogle Scholar
  101. 101.
    P. Witkovsky, J. Zhang, and O. Blam, “Dopaminergic neurons in the retina of Xenopus laevis: amacrine vs. interplexiform subtypes and relation to bipolar cells,” Cell Tissue Res., 278, No. 1, 45–56 (1994).PubMedGoogle Scholar
  102. 102.
    E. Zurawska and J. Z. Nowak, “Serotonin N-acetyltransferase (NAT) induction in mammalian retina: role of cyclic AMP and calcium ions,” Folia Histochem. Cytobiol., 30, No. 1, 5–11 (1992).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Department of BiophysicsSt. Petersburg State Polytechnic UniversitySt. PetersburgRussia
  3. 3.Department of Medical PhysicsSt. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations