Advertisement

Neuroscience and Behavioral Physiology

, Volume 46, Issue 1, pp 73–76 | Cite as

The Specific Role of Dopamine in the Striatum during Operant Learning

  • N. Yu. Ivlieva
  • D. A. Ivliev
Article

The role of dopamine in behavior is in a state of permanent controversy. The notion of ‘prediction error’ is a central component in current reward-based models of learning, but there are many caveats and contradictions in the supporting data. In this paper we propose that the same dopamine signal can both promote an action and reinforce it and we outline a novel model of reward-based learning in which dopamine operates as a teaching signal with DA release starting well before and persisting beyond the action being reinforced. The post-response signal providing the true excitatory drive for long-term potentiation (LTP) comes from the intralaminar nuclei of the thalamus. The main component of this hypothetical mechanism is the direct striatal projection neuron pathway, while there are indications that the indirect pathway is fundamentally able to modulate the direct pathway, thus providing behavioral flexibility.

Keywords

dopamine striatum intralaminar nuclei of the thalamus D1- and D2-receptors operant learning reward reinforcement model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beeler, J. A., “Thorndike’s Law 2.0: Dopamine and the regulation of thrift,” Front. Neurosci., 6, 116 (2012), Doi:  10.3389/fnins.2012. 00116.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Berridge, K. C., “The debate over dopamine’s role in reward: the case for incentive salience,” Psychopharmacology (Berl.), 191, 391–431, (2007).CrossRefGoogle Scholar
  3. 3.
    Cacciapaglia, F., Wightman, R. M., and Carelli, R. M., “Rapid dopamine signaling differentially modulates distinct microcircuits within the nucleus accumbens during sucrose-directed behavior,” J. Neurosci., 3, 13860–13869 (2011).CrossRefGoogle Scholar
  4. 4.
    De Lafuente, V. and Romo, R., “Dopamine neurons code subjective sensory experience and uncertainty of perceptual decisions,” Proc. Natl. Acad. Sci. USA, 108, 19767–19771, (2011).PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Ding, J., Peterson, J. D., and Surmeier, D. J., “Corticostriatal and thalamostriatal synapses have distinctive properties,” J. Neurosci., 28, 6483–6492 (2008).PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Gerfen, C. R. and Surmeier, D. J., “Modulation of striatal projection systems by dopamine,” Ann. Rev. Neurosci., 34, 441–466 (2011).PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Ivlieva, N. Yu., “Involvement of the mesocortico-limbic dopaminergic system in adpative behavior,” Zh. Vyssh. Nerv. Deyat., 60, No. 3, 259–278 (2010).Google Scholar
  8. 8.
    Kreitzer, A. C., “Physiology and pharmacology of striatal neurons,” Ann. Rev. Neurosci., 32, 127–147 (2009).CrossRefPubMedGoogle Scholar
  9. 9.
    McHaffie, J. G., Stanford, T. R., Stein, et al., “Subcortical loops through the basal ganglia,” Trends Neurosci., 28, 401–407 (2005).CrossRefPubMedGoogle Scholar
  10. 10.
    Neve, K. A. and Neve, R. L., “Molecular biology of dopamine receptors,” in: The Dopamine Receptors, Neve, K. A. and Neve R. L. (eds.), Humana Press, Totowa, N.J. (1997), pp. 27–76.CrossRefGoogle Scholar
  11. 11.
    Oleson, E. B., Gentry, R. N., Chioma, V. C., and Cheer, J. F., “Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance,” J. Neurosci., 32, 14804–14808 (2012).PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Puryear, C. B., Kim, M. J., and Mizumori, S. J., “Conjunctive encoding of movement and reward by ventral tegmental area neurons in the freely navigating rodent,” Behav. Neurosci., 124, 234–247, (2010).PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Reiner, A., Hart, N. M., Lei, W., and Deng, Y., “Corticostriatal projection neurons – dichotomous types and dichotomous functions,” Front. Neuroanat., 4, 14 (2010), Doi:  10.3389/fnana.2010.00142.CrossRefGoogle Scholar
  14. 14.
    Richfield, E. K., Penney, J. B., and Young, A. B., “Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system,” Neuroscience, 30, 767–777 (1989).CrossRefPubMedGoogle Scholar
  15. 15.
    Roitman, M. F., Stuber, G. D., Phillips, P. E., et al., “Dopamine operates as a subsecond modulator of food seeking,” J. Neurosci., 24, 1265–1271 (2004).CrossRefPubMedGoogle Scholar
  16. 16.
    Salamone, J. D., Correa, M., Farrar, A., and Mingote, S. M., “Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits,” Psychopharmacology (Berl.), 191, 461–482 (2007).CrossRefGoogle Scholar
  17. 17.
    Schultz, W., “Getting formal with dopamine and reward,” Neuron, 36, 241–263 (2002).CrossRefPubMedGoogle Scholar
  18. 18.
    Shen, W., Flajolet, M., Greengard, P., and Surmeier, D. J., “Dichotomous dopaminergic control of striatal synaptic plasticity,” Science, 321, 848–851 (2008).PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Shuvaev, V. T. and Suvorov, N. F., The Basal Ganglia and Behavior, Nauka, St. Petersburg (2001).Google Scholar
  20. 20.
    Taverna, S., Ilijic, E., and Surmeier, D. J., “Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease,” J. Neurosci., 28, 5504–5512 (2008).PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Thorndike, E., Animal Intelligence: Experimental Studies, Macmillan, New York (1911).CrossRefGoogle Scholar
  22. 22.
    Wassum, K. M., Ostlund, S. B., and Maidment, N. T., “Phasic mesolimbic dopamine signaling precedes and predicts performance of a self-initiated action sequence task,” Biol. Psychiatry, 71, 846–854 (2012).PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Wise, R. A., “Dual roles of dopamine in food and drug seeking: The drivereward paradox,” Biol. Psychiatry, (2012), Doi:pii: S0006-3223(12) 00772-X.  10.1016/j.biopsych.2012.09.001.
  24. 24.
    Wise, R. A. and Bozarth M. A., “Brain mechanisms of drug reward and euphoria,” Psychiatr. Med., 3, 445–460 (1985).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations