Neuroscience and Behavioral Physiology

, Volume 46, Issue 1, pp 42–50 | Cite as

Vestibular Influences on Locomotion in Humans: Results of the Use of Transmastoid Galvanic Stimulation

  • Yu. K. Stolbkov
  • Yu. P. Gerasimenko

Locomotion is the most important means for movement in space. The role of the vestibular system during human locomotion has received insufficient study, mainly because of difficulties associated with isolated stimulation of this system in these conditions. Isolated stimulation of this system during locomotion is difficult because physical movements of the head, activating the vestibular end organs, unavoidably leads to activation of other sensory inputs. Galvanic stimulation is not a natural means of stimulating the vestibular system, but it has the advantage that it provides isolated stimulation of the vestibular inputs. This technique is relatively new in studies of vestibular involvement in human locomotion. Our review addresses contemporary data on the effects of vestibular signals on locomotion in humans obtained using vestibular galvanic stimulation.


locomotion vestibular signal galvanic stimulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bute, “Making sense of behavior,” Int. J. Dev. Biol., 42, No. 3, 507–509 (1998).Google Scholar
  2. 2.
    L. R. Bent, P. S. Bolton, and V. G. Macefield, “Vestibular inputs do not influence the fusimotor system in relaxed muscles of the human leg,” Exp. Brain Res., 180, No. 1, 97–103 (2007).CrossRefPubMedGoogle Scholar
  3. 3.
    L. R. Bent, J. T. Inglis, and B. J. McFadyen, “When is vestibular information important during walking?” J. Neurophysiol., 92, No. 3, 1269–1275 (2004).CrossRefPubMedGoogle Scholar
  4. 4.
    L. R. Bent, B. J. McFadyen, and J. T. Inglis, “Is the use of vestibular information weighted differently across the initiation of walking?” Exp. Brain Res., 157, No. 4, 407–416 (2004).CrossRefPubMedGoogle Scholar
  5. 5.
    L. R. Bent, B. J. McFadyen, and V. F. Merkley, et al., “Magnitude effects of galvanic vestibular stimulation on the trajectory of human gait,” Neurosci. Lett., 279, No. 3, 157–160 (2000).CrossRefPubMedGoogle Scholar
  6. 6.
    L. R. Bent, B. J. McFadyen, and J. T. Inglis, “Visual-vestibular interactions in postural control during the execution of a dynamic task,” Exp. Brain Res., 146, No. 4, 490–500 (2002).CrossRefPubMedGoogle Scholar
  7. 7.
    J. S. Blouin, C. J. Dakin, K. van den Doel, et al., “Extracting phase-dependent human vestibular reflexes during locomotion using both time and frequency correlation approaches,” J. Appl. Physiol., 111, No. 5, 1484–1490 (2011).CrossRefPubMedGoogle Scholar
  8. 8.
    S. B. Bertolami, J. T. Inglis, S. Castellani, et al., “Influence of galvanic vestibular stimulation on postural recovery during sudden falls,” Exp. Brain Res., 205, No. 1, 123–129 (2010).CrossRefGoogle Scholar
  9. 9.
    T. Brandt, “Vestibulopathic gait: you’re better off running than walking,” Curr. Opin. Neurol., 13, No. 1, 3–5 (2000).CrossRefPubMedGoogle Scholar
  10. 10.
    T. Brandt, M. Strupp, J. Benson, and M. Dietrich, “Vestibulopathic gait. Walking and running,” Adv. Neurol., 87, 165–172 (2001).PubMedGoogle Scholar
  11. 11.
    A. N. Carlsen, P. M. Kennedy, K. G. Anderson, et al., “Identifying visual-vestibular contributions during target-directed locomotion,” Neurosci. Lett., 384, No. 3, 217–221 (2005).CrossRefPubMedGoogle Scholar
  12. 12.
    A. H. Clarke, “Laboratory testing of the vestibular system,” Curr. Opin. Otolaryngol. Head Neck Surg., 18, No. 5, 425–430 (2010).CrossRefPubMedGoogle Scholar
  13. 13.
    B. Cohen, G. P. Martinelli, D. Ogorodnikov, et al., “Sinusoidal galvanic vestibular stimulation (sGVS) induces a vasovagal response in the rat,” Exp. Brain Res., 210, No. 1, 45–55 (2011).PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    B. Cohen, S. B. Yakushin, and G. R. Holstein, “What does galvanic vestibular stimulation actually activate?” Front. Neurol., No. 3, 148 (2012).Google Scholar
  15. 15.
    H. S. Cohen, “Vestibular disorders and impaired path integration along a linear trajectory,” J. Vestib. Res., 10, No. 1, 7–15 (2000).PubMedGoogle Scholar
  16. 16.
    C. J. Dakin, J. T. Inglis, R. Chua, and J. S. Blouin, “Muscle-specific modulation of vestibular refl exes with increased locomotor velocity and cadence,” J. Neurophysiol., 110, No. 1, 86–94 (2013).CrossRefPubMedGoogle Scholar
  17. 17.
    C. J. Daki, B. L. Luu, K. van den Doel, et al., “Frequency-specific modulation of vestibular-evoked sway responses in humans,” J. Neurophysiol., 103, No. 2, 1048–1056 (2010).CrossRefGoogle Scholar
  18. 18.
    C. J. Dakin, G. M. Son, J. T. Inglis, and J. S. Blouin, “Frequency response of human vestibular reflexes characterized by stochastic stimuli,” J. Physiol., 583, No. 3, 1117–1127 (2007).PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    B. L. Day, “Galvanic vestibular stimulation: new uses for an old tool,” J. Physiol., 517, No. 3, 631 (1999).PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    F. Deriu, E. Tolu, and J. C. Rothwell, “A short latency vestibulomasseteric reflex evoked by electric stimulation over the mastoid in healthy humans,” J. Physiol., 553, No. 1, 267–279 (2003).PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    N. Deshpande and A. E. Patla, “Postural responses and spatial orientation to neck proprioceptive and vestibular inputs during locomotion in young and older adults,” Exp. Brain Res., 167, No. 3, 468–474 (2005).CrossRefPubMedGoogle Scholar
  22. 22.
    N. Deshpande and A. Patla, “Dynamic visual-vestibular integration during goal directed human locomotion,” Exp. Brain Res., 166, No. 2, 237–247 (2005).CrossRefPubMedGoogle Scholar
  23. 23.
    N. Deshpande and A. Patla, “Visual-vestibular interaction during goal directed locomotion: effects of aging and blurring vision,” Exp. Brain Res., 176, No. 1, 43–53 (2007).CrossRefPubMedGoogle Scholar
  24. 24.
    R. Fitzpatrick, D. Burke, and S. Gandevia, “Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances,” J. Neurophysiol., 76, No. 6, 3994–4008 (1996).PubMedGoogle Scholar
  25. 25.
    R. C. Fitzpatrick, J. E. Butler, and B. L. Day, “Resolving head rotation for human bipedalism,” Curr. Biol., 16, No. 15, 1509–1514 (2006).CrossRefPubMedGoogle Scholar
  26. 26.
    R. C. Fitzpatrick and B. L. Day, “Probing the human vestibular system with galvanic stimulation,” J. Appl. Physiol., 96, No. 6, 2301–2316 (2004).CrossRefPubMedGoogle Scholar
  27. 27.
    R. C. Fitzpatrick, D. L. Wardman, and J. L. Taylor, “Effects of galvanic vestibular stimulation during human walking,” J. Physiol., 517, No. 3, 931–939 (1999).PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    S. Glasauer, M. A. Amorim, E. Vitte, and A. Berthoz, “Goal-directed linear locomotion in normal and labyrinthine-defective subjects,” Exp. Brain Res., 98, No. 2, 323–335 (1994).CrossRefPubMedGoogle Scholar
  29. 29.
    J. M. Goldberg, C. E. Smith, and C. Fernandez, “Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey,” J. Neurophysiol., 51, No. 6, 1236–1256 (1984).PubMedGoogle Scholar
  30. 30.
    J. F. Iles, R. Baderin, R. Tanner, and A. Simon, “Human standing and walking: comparison of the effects of stimulation of the vestibular system,” Exp. Brain Res., 178, No. 2, 151–166 (2006).CrossRefPubMedGoogle Scholar
  31. 31.
    K. Jahn, M. S. Strupp, E. Schneider, et al., “Differential effects of vestibular stimulation on walking and running,” Neuroreport, 11, No. 8, 1745–1748 (2000).CrossRefPubMedGoogle Scholar
  32. 32.
    P. M. Kennedy, A. N. Carlsen, J. T. Inglis, et al., “Relative contributions of visual and vestibular information on the trajectory of human gait,” Exp. Brain Res., 153, No. 1, 113–117 (2003).CrossRefPubMedGoogle Scholar
  33. 33.
    J. Kim and I. S. Curthoys, “Responses of primary vestibular neurons to galvanic vestibular stimulation (GVS) in the anaesthetised guinea pig,” Brain Res. Bull., 64, No. 3, 265–271 (2004).CrossRefPubMedGoogle Scholar
  34. 34.
    L. D. Latt, P. J. Sparto, J. M. Furman, and M. S. Redfern, “The steady-state postural response to continuous sinusoidal galvanic vestibular stimulation,” Gait Posture, 18, No. 2, 64–72 (2003).CrossRefPubMedGoogle Scholar
  35. 35.
    O. Lowenstein, “The effect of galvanic polarization on the impulsedischarge from sense endings in the isolated labyrinth of the thornback ray (Raja clavata),” J. Physiol., 127, No. 1, 104–117 (1955).PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    B. J. McFadyen, L. Bouyer, L. R. Bent, and J. T. Inglis, “Visualvestibular influences on loco-motor adjustments for stepping over an obstacle,” Exp. Brain Res., 179, No. 2, 235–243 (2007).CrossRefPubMedGoogle Scholar
  37. 37.
    T. Pozzo, A. Berthoz, L. Lefort, and E. Vitte, “Head stabilization during various locomotor tasks in humans. II. Patients with bilateral vestibular deficits,” Exp. Brain Res., 85, No. 1, 208–217 (1991).CrossRefPubMedGoogle Scholar
  38. 38.
    A. J. Spence, G. Nicholson-Thomas, and R. Lampe, “Closing the loop in legged neuromechanics: an open-source computer vision controlled treadmill,” J. Neurosci. Meth., 215, No. 2, 164–169 (2013).CrossRefGoogle Scholar
  39. 39.
    R. J. St. George, B. L. Day, and R. C. Fitzpatrick, “Adaptation of vestibular signals for self-motion perception,” J. Physiol., 589, No. 4, 843–853 (2011).PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    R. J. St. George and R. C. Fitzpatrick, “The sense of self-motion, orientation and balance explored by vestibular stimulation,” J. Physiol., 589, No. 4, 807–813 (2011).CrossRefGoogle Scholar
  41. 41.
    T. Stephan, A. Deutschländer, A. Nolte, et al., “Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies,” Neuroimage, 26, No. 3, 721–732 (2005).CrossRefPubMedGoogle Scholar
  42. 42.
    K. S. Utz, V. Dimova, K. Oppenländer, and G. Kerkhoff, “Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology: a review of current data and future implications,” Neuropsychol., 48, No. 10, 2789–2810 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Pavlov Institute of Physiology, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations