Skip to main content
Log in

Vestibular Influences on Locomotion in Humans: Results of the Use of Transmastoid Galvanic Stimulation

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Locomotion is the most important means for movement in space. The role of the vestibular system during human locomotion has received insufficient study, mainly because of difficulties associated with isolated stimulation of this system in these conditions. Isolated stimulation of this system during locomotion is difficult because physical movements of the head, activating the vestibular end organs, unavoidably leads to activation of other sensory inputs. Galvanic stimulation is not a natural means of stimulating the vestibular system, but it has the advantage that it provides isolated stimulation of the vestibular inputs. This technique is relatively new in studies of vestibular involvement in human locomotion. Our review addresses contemporary data on the effects of vestibular signals on locomotion in humans obtained using vestibular galvanic stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bute, “Making sense of behavior,” Int. J. Dev. Biol., 42, No. 3, 507–509 (1998).

    Google Scholar 

  2. L. R. Bent, P. S. Bolton, and V. G. Macefield, “Vestibular inputs do not influence the fusimotor system in relaxed muscles of the human leg,” Exp. Brain Res., 180, No. 1, 97–103 (2007).

    Article  PubMed  Google Scholar 

  3. L. R. Bent, J. T. Inglis, and B. J. McFadyen, “When is vestibular information important during walking?” J. Neurophysiol., 92, No. 3, 1269–1275 (2004).

    Article  PubMed  Google Scholar 

  4. L. R. Bent, B. J. McFadyen, and J. T. Inglis, “Is the use of vestibular information weighted differently across the initiation of walking?” Exp. Brain Res., 157, No. 4, 407–416 (2004).

    Article  PubMed  Google Scholar 

  5. L. R. Bent, B. J. McFadyen, and V. F. Merkley, et al., “Magnitude effects of galvanic vestibular stimulation on the trajectory of human gait,” Neurosci. Lett., 279, No. 3, 157–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. L. R. Bent, B. J. McFadyen, and J. T. Inglis, “Visual-vestibular interactions in postural control during the execution of a dynamic task,” Exp. Brain Res., 146, No. 4, 490–500 (2002).

    Article  PubMed  Google Scholar 

  7. J. S. Blouin, C. J. Dakin, K. van den Doel, et al., “Extracting phase-dependent human vestibular reflexes during locomotion using both time and frequency correlation approaches,” J. Appl. Physiol., 111, No. 5, 1484–1490 (2011).

    Article  PubMed  Google Scholar 

  8. S. B. Bertolami, J. T. Inglis, S. Castellani, et al., “Influence of galvanic vestibular stimulation on postural recovery during sudden falls,” Exp. Brain Res., 205, No. 1, 123–129 (2010).

    Article  Google Scholar 

  9. T. Brandt, “Vestibulopathic gait: you’re better off running than walking,” Curr. Opin. Neurol., 13, No. 1, 3–5 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. T. Brandt, M. Strupp, J. Benson, and M. Dietrich, “Vestibulopathic gait. Walking and running,” Adv. Neurol., 87, 165–172 (2001).

    CAS  PubMed  Google Scholar 

  11. A. N. Carlsen, P. M. Kennedy, K. G. Anderson, et al., “Identifying visual-vestibular contributions during target-directed locomotion,” Neurosci. Lett., 384, No. 3, 217–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. A. H. Clarke, “Laboratory testing of the vestibular system,” Curr. Opin. Otolaryngol. Head Neck Surg., 18, No. 5, 425–430 (2010).

    Article  PubMed  Google Scholar 

  13. B. Cohen, G. P. Martinelli, D. Ogorodnikov, et al., “Sinusoidal galvanic vestibular stimulation (sGVS) induces a vasovagal response in the rat,” Exp. Brain Res., 210, No. 1, 45–55 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  14. B. Cohen, S. B. Yakushin, and G. R. Holstein, “What does galvanic vestibular stimulation actually activate?” Front. Neurol., No. 3, 148 (2012).

  15. H. S. Cohen, “Vestibular disorders and impaired path integration along a linear trajectory,” J. Vestib. Res., 10, No. 1, 7–15 (2000).

    CAS  PubMed  Google Scholar 

  16. C. J. Dakin, J. T. Inglis, R. Chua, and J. S. Blouin, “Muscle-specific modulation of vestibular refl exes with increased locomotor velocity and cadence,” J. Neurophysiol., 110, No. 1, 86–94 (2013).

    Article  PubMed  Google Scholar 

  17. C. J. Daki, B. L. Luu, K. van den Doel, et al., “Frequency-specific modulation of vestibular-evoked sway responses in humans,” J. Neurophysiol., 103, No. 2, 1048–1056 (2010).

    Article  Google Scholar 

  18. C. J. Dakin, G. M. Son, J. T. Inglis, and J. S. Blouin, “Frequency response of human vestibular reflexes characterized by stochastic stimuli,” J. Physiol., 583, No. 3, 1117–1127 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. B. L. Day, “Galvanic vestibular stimulation: new uses for an old tool,” J. Physiol., 517, No. 3, 631 (1999).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. F. Deriu, E. Tolu, and J. C. Rothwell, “A short latency vestibulomasseteric reflex evoked by electric stimulation over the mastoid in healthy humans,” J. Physiol., 553, No. 1, 267–279 (2003).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. N. Deshpande and A. E. Patla, “Postural responses and spatial orientation to neck proprioceptive and vestibular inputs during locomotion in young and older adults,” Exp. Brain Res., 167, No. 3, 468–474 (2005).

    Article  PubMed  Google Scholar 

  22. N. Deshpande and A. Patla, “Dynamic visual-vestibular integration during goal directed human locomotion,” Exp. Brain Res., 166, No. 2, 237–247 (2005).

    Article  PubMed  Google Scholar 

  23. N. Deshpande and A. Patla, “Visual-vestibular interaction during goal directed locomotion: effects of aging and blurring vision,” Exp. Brain Res., 176, No. 1, 43–53 (2007).

    Article  PubMed  Google Scholar 

  24. R. Fitzpatrick, D. Burke, and S. Gandevia, “Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances,” J. Neurophysiol., 76, No. 6, 3994–4008 (1996).

    CAS  PubMed  Google Scholar 

  25. R. C. Fitzpatrick, J. E. Butler, and B. L. Day, “Resolving head rotation for human bipedalism,” Curr. Biol., 16, No. 15, 1509–1514 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. R. C. Fitzpatrick and B. L. Day, “Probing the human vestibular system with galvanic stimulation,” J. Appl. Physiol., 96, No. 6, 2301–2316 (2004).

    Article  PubMed  Google Scholar 

  27. R. C. Fitzpatrick, D. L. Wardman, and J. L. Taylor, “Effects of galvanic vestibular stimulation during human walking,” J. Physiol., 517, No. 3, 931–939 (1999).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. S. Glasauer, M. A. Amorim, E. Vitte, and A. Berthoz, “Goal-directed linear locomotion in normal and labyrinthine-defective subjects,” Exp. Brain Res., 98, No. 2, 323–335 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. J. M. Goldberg, C. E. Smith, and C. Fernandez, “Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey,” J. Neurophysiol., 51, No. 6, 1236–1256 (1984).

    CAS  PubMed  Google Scholar 

  30. J. F. Iles, R. Baderin, R. Tanner, and A. Simon, “Human standing and walking: comparison of the effects of stimulation of the vestibular system,” Exp. Brain Res., 178, No. 2, 151–166 (2006).

    Article  PubMed  Google Scholar 

  31. K. Jahn, M. S. Strupp, E. Schneider, et al., “Differential effects of vestibular stimulation on walking and running,” Neuroreport, 11, No. 8, 1745–1748 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. P. M. Kennedy, A. N. Carlsen, J. T. Inglis, et al., “Relative contributions of visual and vestibular information on the trajectory of human gait,” Exp. Brain Res., 153, No. 1, 113–117 (2003).

    Article  PubMed  Google Scholar 

  33. J. Kim and I. S. Curthoys, “Responses of primary vestibular neurons to galvanic vestibular stimulation (GVS) in the anaesthetised guinea pig,” Brain Res. Bull., 64, No. 3, 265–271 (2004).

    Article  PubMed  Google Scholar 

  34. L. D. Latt, P. J. Sparto, J. M. Furman, and M. S. Redfern, “The steady-state postural response to continuous sinusoidal galvanic vestibular stimulation,” Gait Posture, 18, No. 2, 64–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. O. Lowenstein, “The effect of galvanic polarization on the impulsedischarge from sense endings in the isolated labyrinth of the thornback ray (Raja clavata),” J. Physiol., 127, No. 1, 104–117 (1955).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. B. J. McFadyen, L. Bouyer, L. R. Bent, and J. T. Inglis, “Visualvestibular influences on loco-motor adjustments for stepping over an obstacle,” Exp. Brain Res., 179, No. 2, 235–243 (2007).

    Article  PubMed  Google Scholar 

  37. T. Pozzo, A. Berthoz, L. Lefort, and E. Vitte, “Head stabilization during various locomotor tasks in humans. II. Patients with bilateral vestibular deficits,” Exp. Brain Res., 85, No. 1, 208–217 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. A. J. Spence, G. Nicholson-Thomas, and R. Lampe, “Closing the loop in legged neuromechanics: an open-source computer vision controlled treadmill,” J. Neurosci. Meth., 215, No. 2, 164–169 (2013).

    Article  Google Scholar 

  39. R. J. St. George, B. L. Day, and R. C. Fitzpatrick, “Adaptation of vestibular signals for self-motion perception,” J. Physiol., 589, No. 4, 843–853 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  40. R. J. St. George and R. C. Fitzpatrick, “The sense of self-motion, orientation and balance explored by vestibular stimulation,” J. Physiol., 589, No. 4, 807–813 (2011).

    Article  Google Scholar 

  41. T. Stephan, A. Deutschländer, A. Nolte, et al., “Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies,” Neuroimage, 26, No. 3, 721–732 (2005).

    Article  PubMed  Google Scholar 

  42. K. S. Utz, V. Dimova, K. Oppenländer, and G. Kerkhoff, “Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology: a review of current data and future implications,” Neuropsychol., 48, No. 10, 2789–2810 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Stolbkov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 100, No. 6, pp. 684–698, June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolbkov, Y.K., Gerasimenko, Y.P. Vestibular Influences on Locomotion in Humans: Results of the Use of Transmastoid Galvanic Stimulation. Neurosci Behav Physi 46, 42–50 (2016). https://doi.org/10.1007/s11055-015-0196-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0196-3

Keywords

Navigation