Neuroscience and Behavioral Physiology

, Volume 45, Issue 8, pp 902–909 | Cite as

Effects of Roncoleukin on Measures of Immunity and the Anxious-Depressive State Induced by Chronic Social Stress in Male Mice

  • A. V. Shurlygina
  • A. G. Galyamina
  • E. V. Mel’nikova
  • N. G. Panteleeva
  • M. V. Tenditnik
  • V. A. Trufakin
  • N. N. Kudryavtseva

Chronic social stress leads to the development of an anxious-depressive state in male mice, accompanied by impairments to cellular and humoral immunity. The aim of the present work was to study the influences of the immunostimulator Roncoleukin on different components of immunity and psychoemotional status in depressed male mice. Roncoleukin (5000 IU/kg, i.p.) and reference agent physiological saline were given to anxious-depressed male mice for two weeks on the background of relative tranquility. At this point, the cellular compositions of the thymus, spleen, and blood were studied. The effects of Roncoleukin on communicativeness, anxiety, and depressivity, as assessed in behavioral tests, were also investigated. Roncoleukin decreased thymocyte and splenocyte counts, though there was an increase in the number of blood leukocytes and an increase in the mass index of the thymus. Roncoleukin increased the proportion of CD4+8+ lymphocytes in the thymus, and also increased the proportions of CD8+ and CD3+25 cells in the spleen. Anxiogenic, stimulatory, and mild antidepressant effects were seen. Roncoleukin had little effect when used in the complex treatment of impaired immunity and psychoemotional disorders evoked by chronic social stress.


immunodefi ciency anxious-depressive disorders chronic social stress Roncoleukin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. F. Avgustinovich, O. V. Alekseenko, I. V. Bakshtanovskaya, et al., “Dynamic changes in brain serotoninergic and dopaminergic activity during the development of anxious depression: an experimental study,” Usp. Fiziol. Nauk., 35, No. 4, 19–40 (2004).PubMedGoogle Scholar
  2. 2.
    N. I. Gryazeva, A. V. Shurlygina, L. V. Verbitskaya, et al., “Changes in the activity of blood lymphocyte lactate and succinate dehydrogenases in males with aggressive and submissive types of behavior,” Byull. Eksperim. Biol. Med., 129, No. 1, 53–56 (2000).Google Scholar
  3. 3.
    N. N. Kudryavtseva, D. A. Smagin, A. G. Galyamina, et al., “Effects of clomipramine on changes in the lymphocyte subpopulation composition and the cell cycle in the thymus and spleen occurring in depressive male mice exposed to chronic social stress,” Psikhofarm. Biol. Narkol., 11, No. 1–2, 2677–2687 (2011).Google Scholar
  4. 4.
    N. N. Kudryavtseva, A. V. Shyrlygina, E. V. Mel’nikova, et al., “Cell cycle impairments in the thymus and spleen in male mice exposed to chronic social stress: effects of diazepam,” Byull. Eksperim. Biol. Med., 151, No. 4, 391–394 (2011).Google Scholar
  5. 5.
    M. D. Mashkovskii Medicines, Novaya Volna, Moscow (2008).Google Scholar
  6. 6.
    A. V. Merkur’eva, G. L. Vilich, and R. P. Nartsissov, Biochemical and Cytochemical Methods for Assaying the Activities of Enzyme and Enzyme-Substrate Systems with Different Cellular Locations. Methodological Recommendations, Ioshkar-Ola, Moscow (1982).Google Scholar
  7. 7.
    M. V. Ostrovskii, A. N. Moiseev, E. D. Sakharova, et al., Roncoleukin: Methodological Recommendations for Veterinarians, Alter Ego, St. Petersburg (2010).Google Scholar
  8. 8.
    N. A. Popova, S. I. Il’nitskaya, L. A. Kolesnikova, et al., “Effects of social confl ict on various measures of nonspecifi c resistance in mice,” Ros. Fiziol. Zh., 82, No. 12, 12–17 (1996).Google Scholar
  9. 9.
    D. A. Smagin, A. G. Galyamina, N. P. Bondar’, and N. N. Kudryavtseva, “Effects of clomipramine on the anxious-depressive state in duced by chronic social stress in male mice,” Psikhofarm. Biol. Narkol., 11, No. 1–2, 2666–2676 (2011).Google Scholar
  10. 10.
    M. V. Tenditnik, A. V. Shurlygina, E. V. Mel’nikova, et al., “Changes in lymphocyte subpopulation composition in immunocompetent organs in mice exposed to chronic social stress,” Ros. Fiziol. Zh., 90, No. 12, 1522–1529 (2004).Google Scholar
  11. 11.
    M. V. Tenditnik, A. V. Shurlygina, E. V. Mel’nikova, et al., “Effects of diazepam on the lymphocyte subpopulation composition in the immunocompetent organs of anxious male mice,” Biol. Sib. Otdel. Ros. Akad. Med. Nauk., 30, No. 4, 46–50 (2010).Google Scholar
  12. 12.
    D. F. Avgustinovich, I. L. Kovalenko, and N. N. Kudryavtseva, “A model of anxious depression: persistence of behavioral pathology,” Neurosci. Behav. Physiol., 35, No. 9, 917–924 (2005).CrossRefPubMedGoogle Scholar
  13. 13.
    H. Anisma and Z. Merali, “Anhedonic and anxiogenic effects of cytokine exposure,” Adv. Exp. Med. Biol., 461, 199–233 (1999).CrossRefGoogle Scholar
  14. 14.
    D. A. Baron, T. Hardie, and S. H. Baron, “Possible association of interleukin-2 treatment with depression and suicide,” J. Am. Osteopath. Assoc., 93, No. 7, 799–800 (1993).PubMedGoogle Scholar
  15. 15.
    O. Berton, C. A. McClung, R. J. Dileone, et al., “Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress,” Science, 311, 864–868 (2006).CrossRefPubMedGoogle Scholar
  16. 16.
    R. R. Brown, C. M. Lee, P. K. Kohler, et al., “Altered tryptophan and neopterin metabolism in cancer patients treated with recombinant interleukin-2,” Cancer Res., 49, 4941–4944 (1989).PubMedGoogle Scholar
  17. 17.
    L. Capuron, A. Ravaud, and R. Dantzer, “Early depressive symptoms in cancer patients receiving interleukin 2 and/or interferon alfa-2b therapy,” J. Clin. Oncol., 18, No. 10, 2143–2151 (2000).PubMedGoogle Scholar
  18. 18.
    L. V. Devoino, E. L. Alperina, N. N. Kudryavtseva, and N. K. Popova, “Immune responses in male mice with aggressive and submissive behavior patterns: strain differences,” Brain Behav. Immun., 7, 91–96 (1993).CrossRefPubMedGoogle Scholar
  19. 19.
    A. J. Dunn, A. H. Swiergiel, and R. de Beaurepaire, “Cytokines as mediators of depression: What can we learn from animal studies?” Neurosci. Behav. Rev., 29, 891–909 (2005).CrossRefGoogle Scholar
  20. 20.
    A. Gladkevich, H. F. Kauffman, and J. Korf, “Lymphocytes as a neural probe: potential for studying psychiatric disorders,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 28, No. 3, 559–576 (2004).CrossRefPubMedGoogle Scholar
  21. 21.
    M. K. Gould, X. L. Vu, T. Seebeck, and H. P. de Koning, “Quantification of apoptosis and the cell cycle distribution of primary B cells using propidium iodide AfCS procedure protocol,” Anal. Biochem., 382, No. 2, 87–93 (2008).CrossRefPubMedGoogle Scholar
  22. 22.
    B. D. Karrenbauer, C. P. Müller, Y. J. Ho, et al., “Time-dependent in-vivo effects of interleukin-2 on neurotransmitters in various cortices: relationships with depressive-related and anxiety-like behaviour,” J. Neuroimmun., 237, No. 1–2, 23–32 (2011).CrossRefGoogle Scholar
  23. 23.
    B. D. Karrenbauer, Y. J. Ho, V. Ludwig, et al., “Time-dependent effects of striatal interleukin-2 on open-fi eld behavior in rats,” J. Neuroimmunol., 208, 10–18 (2009).CrossRefPubMedGoogle Scholar
  24. 24.
    H. F. Kauffman and J. Korf, “Lymphocytes as a neural probe: potential for studying psychiatric disorders,” Prog. Neuropsychopharmac. Biol. Psychiatry, 3, 559–576 (2004).Google Scholar
  25. 25.
    N. N. Kudryavtseva, “Experience of defeats decreases the behavioral reactivity to conspecifi c in partition test,” Behav. Process., 32, 297–304 (1994).CrossRefGoogle Scholar
  26. 26.
    N. N. Kudryavtseva, Sensory Contact Model: Protocol, Control, Applications, Nova Science Publishers Inc., New York (2010).Google Scholar
  27. 27.
    N. N. Kudryavtseva and D. F. Avgustinovich, “Behavioral and physiological markers of experimental depression induced by social conflicts (DISC),” Aggress. Behav., 24, 271–286 (1998).CrossRefGoogle Scholar
  28. 28.
    N. N. Kudryavtseva, D. F. Avgustinovich, N. P. Bondar, et al., “An experimental approach for the study of psychotropic drug effects under simulated clinical conditions,” Curr. Drug Metab., 9, No. 4, 352–360 (2008).CrossRefPubMedGoogle Scholar
  29. 29.
    S. Lacosta, Z. Merali, and H. Anisman, “Influence of acute and repeated interleukin-2 administration on spatial learning, locomotor activity, exploratory behaviors, and anxiety,” Behav. Neurosci., 113, No. 5, 1030–1041 (1999).CrossRefPubMedGoogle Scholar
  30. 30.
    R. G. Lister, “The use of a plus-maze to measure anxiety in the mouse,” Psychopharmacology (Berlin), 92, No. 2, 180–185 (1987).CrossRefGoogle Scholar
  31. 31.
    A. M. Myint, M. J. Schwarz, H. W. Steinbusch, and B. E. Leonard, “Neuropsychiatric disorders related to interferon and interleukins treatment,” Metab. Brain Dis., 24, No. 1, 55–68 (2009).CrossRefPubMedGoogle Scholar
  32. 32.
    T. Nagata, H. Yamada, T. Iketani, and N. J. Kiriike, “Relationship between plasma concentrations of cytokines, ratio of CD4 and CD8, lymphocyte proliferative responses, and depressive and anxiety state in bulimia nervosa,” Psychosom. Res., 60, No. 1, 99–103 (2006).CrossRefGoogle Scholar
  33. 33.
    S. Pauli, A. C. E. Lithorst, and J. M. H. M. Reul, “Tumor necrosis factor-alfa and interleukin-2 differentially affect hippocampal serotonergic neurotransmission, behavioral activity, body temperature and hypothalamic-pituitary adrenocortical axis activity in the rat,” Eur. J. Neurosci., 10, 868–878 (1998).CrossRefPubMedGoogle Scholar
  34. 34.
    C. Pawlak, K. W. Rainer, and R. K. Schwarting, “Striatal microinjections of interleukin-2 and rat behaviour in the elevated plus-maze,” Behav. Brain Res., 168, 339–344 (2006).CrossRefPubMedGoogle Scholar
  35. 35.
    R. D. Porsolt, M. Le Pichon, and M. Jalfre, “Depression: a new animal model sensitive to antidepressant treatments,” Nature, 266, No. 5604, 730–732 (1977).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. V. Shurlygina
    • 1
  • A. G. Galyamina
    • 2
  • E. V. Mel’nikova
    • 1
  • N. G. Panteleeva
    • 1
  • M. V. Tenditnik
    • 1
  • V. A. Trufakin
    • 1
  • N. N. Kudryavtseva
    • 2
  1. 1.Research Institute of Physiology, Siberian BranchRussian Academy of Medical SciencesNovosibirskRussia
  2. 2.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations