Advertisement

Neuroscience and Behavioral Physiology

, Volume 45, Issue 5, pp 568–575 | Cite as

Brain-Derived Neurotrophic Factor: Effects on Genetically and Epigenetically Determined Behavioral Disorders

  • N. K. Popova
  • M. V. Morozova
Article

Studies in recent years have significantly widened our understanding of the mechanism of action of brain-derived neurotrophic factor (BDNF) and the potential areas of its application. This review presents results from our own studies, along with published data on the influences of BDNF on epigenetically and genetically determined behavioral disorders. Particular attention is paid to the role of the genotype and the involvement of the brain serotonin system in the effects of BDNF. The material presented in this review provides evidence that: 1) the key genes of the brain serotonin system (tryptophan hydroxylase 2, 5-HT1A and 5-HT2A receptors) are involved in the mechanism of action of BDNF; 2) single central doses of BDNF have long-lasting positive influences on several genetically determined manifestations of pathological behavior; 3) BDNF can weaken the manifestations of behavioral disorders induced by harmful environmental factors acting during the prenatal period.

Keywords

BDNF, epigenetically and genetically determined behavioral disorders serotonin, brain serotonin system genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. A. Gomazkov, “Brain neurotrophic and growth factors: specific regulatory features and therapeutic potential,” Usp. Fiziol. Nauk., 36, No. 2, 1–25 (2005).Google Scholar
  2. 2.
    O. A. Gomazkov, Aging of the Brain and Neurotrophic Therapy, IKAR, Moscow (2011).Google Scholar
  3. 3.
    E. G. Kuznetsov, T. G. Amstislavskaya,V. V. Bulygina and N. K. Popova, “Effects of stress during the prenatal period on sexual arousal and the sexual orientation in male mice,” Ros. Fiziol. Zh., 92, No. 1, 123–132 (2006).Google Scholar
  4. 4.
    M. V. Morozova and N. K. Popova, “Combined influence of alcohol and stress during the perinatal period on the behavior of adult mice,” Ros. Fiziol. Zh., 96, No. 11, 72–79 (2010).Google Scholar
  5. 5.
    J. Alder, S. Thakker-Varia, D. A. Bangasser, et al., “Brain-derived neurotrophic factor-induced gene expression reveals novel actions of NGF in hippocampal synaptic plasticity,” J. Neurosci., 23, 10800–10808 (2003).PubMedCentralPubMedGoogle Scholar
  6. 6.
    P. Alonso, M. Gratacol, J. N. Menchon, et al., “Extensive genotyping of the BDNF and NTRK2 genes defines protective haplotypes against obsessive-compulsive disorder,” Biol. Psychiatry, 63, No. 6, 619–628 (2008).CrossRefPubMedGoogle Scholar
  7. 7.
    J. J. An, K. Gharami, G. Liao, et al., “Distinct role of long 3UTRbdnf mRNA in spine morphology and synaptic plasticity in hippocampal neurons,” Cell, 134, 175–187 (2008).CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    D. T. Balu, B. A. Hoshaw, J. E. Malberg, et al., “Differential regulation of central BDNF protein levels by antidepressant and non-antidepressant drug treatments,” Brain Res., 1211, 37–43 (2008).CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Y. A. Barde, D. Edgar, and H. Thoenen, “Purification of a new neurotrophic factor from mammalian brain,” EMBO J., 1, 549–553 (1982).PubMedCentralPubMedGoogle Scholar
  10. 10.
    A. Bartoletti, L. Cancedda, S. W. Reid, et al., “Heterozygous knockout mice for brain-derived neurotrophic factor show a pathway-specific impairment of long-term potentiation but normal critical period for monocular deprivation,” J. Neurosci., 22, No. 23, 10,072–10,077 (2002).Google Scholar
  11. 11.
    Z. Bhagwagar, R. Hinz, M. Taylor, et al., “Increased 5-HT(2A) receptor binding in euthymic, medication-free patients recovered from depression: a positron emission study with [(11)C]MDL 100,907,” Am. J. Psychiatry, 163, 1580–1587 (2006).PubMedGoogle Scholar
  12. 12.
    M. Bibel and Y. A. Barde, “Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system,” Genes Dev., 14, No. 23, 2919–2937 (2000).CrossRefPubMedGoogle Scholar
  13. 13.
    A. Bird, “Perceptions of epigenetics,” Nature, 447, 396–398 (2007).CrossRefPubMedGoogle Scholar
  14. 14.
    Y. Boulougouris, S. R. Chamberlain, and T. W. Robbins, “Crossspecies models of OCD spectrum disorders,” Psychiatry Res., 170, No. 1, 15–21 (2009).CrossRefPubMedGoogle Scholar
  15. 15.
    C. R. Bramham and E. Messaoudi, “BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis,” Prog. Neurobiol., 76, 99–125 (2005).CrossRefPubMedGoogle Scholar
  16. 16.
    I. Branchi, I. D’Andrea, M. Fiore, et al., “Early social enrichment shapes social behavior and nerve growth factor and brain-derived neurotrophic factor levels in the adult mouse brain,” Biol. Psychiatry, 60, No. 7, 600–606 (2006).CrossRefGoogle Scholar
  17. 17.
    I. Branchi, N. Francia, and E. Alleva, “Epigenetic control of neurobehavioral plasticity: the role of neurotrophins,” Behav. Pharmacol., 15, No. 5–6, 353–362 (2004).CrossRefPubMedGoogle Scholar
  18. 18.
    L. Burd, T. M. Cotsonas-Hassler, T. Martsolf, and J. Kerbeshian, “Recognition and management of fetal alcohol syndrome,” Neurotoxicol. Teratol., 25, No. 6, 681–688 (2003).CrossRefPubMedGoogle Scholar
  19. 19.
    K. S. Cadenhead, M. A. Geyer, and D. L. Branff, “Impaired startle prepulse inhibition and habituation in patients with schizotypal personality disorder,” Am. J. Psychiatry, 150, 1862–1867 (1993).CrossRefPubMedGoogle Scholar
  20. 20.
    M. V. Caldeira, C. V. Melo, D. B. Pereira, et al., “BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons,” Mol. Cell. Neurosci., 35, 208–219 (2007).CrossRefPubMedGoogle Scholar
  21. 21.
    L. M. Carneiro, J. P. Diógenes, S. M. Vasconcelos, et al., “Behavioral and neurochemical effects on rat offspring after prenatal exposure to ethanol,” Neurotoxicol. Teratol., 27, No. 4, 585–592 (2005).CrossRefPubMedGoogle Scholar
  22. 22.
    E. Castren, “Neurotrophic effect of antidepressant drugs,” Curr. Opin. Pharmacol., 4, 58–64 (2004).CrossRefPubMedGoogle Scholar
  23. 23.
    J. P. Chan, J. Cordeira, G. A. Calderon, et al., “Depletion of central BDNF in mice impedes terminal differentiation of new granule neurons in the adult hippocampus,” Mol. Cell. Neurosci., 39, No. 3, 372–383 (2008).CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    J. P. Chan, T. J. Under, J. Byrnes, and M. Rios, “Examination of behavioral deficits triggered by targeting BDNF in fetal or postnatal brains of mice,” Neuroscience, 142, No. 1, 49–58 (2006).CrossRefPubMedGoogle Scholar
  25. 25.
    M. V. Chao, R. Rajagopal, and F. S. Lee, “Neurotrophin signalling in health and disease,” Clin. Science, 110, 167–173 (2006).CrossRefGoogle Scholar
  26. 26.
    B. Connor, D. Young, Q. Yan, et al., “Brain-derived neurotrophic factors,” Brain Res. Mol. Brain Res., 49, No. 1–2, 71–81 (1997).CrossRefPubMedGoogle Scholar
  27. 27.
    G. Dörner, T. Geier, L. Ahrens, et al., “Prenatal stress as possible aetiogenic factor of homosexuality in human males,” Endokrinologie, 75, No. 3, 365–368 (1980).PubMedGoogle Scholar
  28. 28.
    G. Dörner, B. Schenk, B. Schmiedel, and L. Ahrens, “Stressful events in prenatal life of bi- and homosexual men,” Exp. Clin. Endocrinol., 81, No. 1, 83–87 (1983).CrossRefPubMedGoogle Scholar
  29. 29.
    M. Fiore, G. Laviola, L. Aloe, et al., “Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice,” Neurotoxicology, 30, No. 1, 59–71 (1990).CrossRefGoogle Scholar
  30. 30.
    D. Fiorentino, G. Coriale, P. Spagnolo, et al., “Fetal alcohol syndrome disorders: experience in the field,” in: The Lazio Study Preliminary Report, Ann. 1st Super Sanita, 42, 53–57 (2006).Google Scholar
  31. 31.
    F. Fumagalli, G. Bedogni, J. Perez, et al., “Corticostriatal brain-derived neurotrophic factor dysregulation in adult rats following prenatal stress,” Eur. J. Neurosci., 20, No. 5, 1348–1354 (2004).CrossRefPubMedGoogle Scholar
  32. 32.
    M. A. Geyer, N. R. Swerdlow, R. S. Mansbach, and D. L. Braff, “Startle response models of sensorimotor gating and habituation deficits in schizophrenia,” Brain Res. Bull., 25, 485–498 (1990).CrossRefPubMedGoogle Scholar
  33. 33.
    J. L. Goldberg and B. A. Barres, “The relationship between neuronal survival and regeneration,” Annu. Rev. Neurosci., 23, 579–612 (2000).CrossRefPubMedGoogle Scholar
  34. 34.
    M. Greenberg, B. Xu, B. Lu, and B. Hempstead, “New insights in the biology of BDNF synthesis and release: implications in CNS function,” J. Neurosci., 29, No. 4, 12764–12767 (2009).CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    D. Hall, A. Dhilla, A. Charalambous, et al., “Sequence variants of the brain-derived neurotrophic factor (BDNF) gene are strongly associated with obsessive-compulsive disorder,” Am. J. Hu. Genet., 73, No. 2, 370–376 (2003).CrossRefGoogle Scholar
  36. 36.
    B. L. Hempstead, “Dissecting the diverse actions of pro- and mature neurotrophins,” Curr. Alzheimer Res., 3, No. 1, 19–24 (2006).CrossRefPubMedGoogle Scholar
  37. 37.
    Y. Hu and S. J. Russek, “BDNF and the diseased nervous system: a delicate balance between adaptive and pathological processes of gene regulation,” J. Neurochem., 105, 1–17 (2008).CrossRefPubMedGoogle Scholar
  38. 38.
    T. Itoh, M. Tokumura, and K. Abe, “Effect of rolipram, a phosphodiesterase 4 inhibitor, in combination with imipramine on depressive behavior, CRE binding activity and BDNF level in learned helplessness rats,” Eur. J. Pharmacol., 498, 135–142 (2004).CrossRefPubMedGoogle Scholar
  39. 39.
    P. Jansen, K. Giehl, J. Nyengaard, et al., “Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury,” Nat. Neurosci., 10, No. 11, 1449–1457 (2007).CrossRefPubMedGoogle Scholar
  40. 40.
    D. Joel, “Current animal models of obsessive compulsive disorder: a critical review,” Neuropsychopharmacol. Biol. Psychiatry, 30, No. 3, 374–388 (2006).CrossRefGoogle Scholar
  41. 41.
    J. E. Johnson, “Neurotrophic factors,” in: Fundamental Neuroscience, M. J. Zigmond et al. (eds.), Oxford University Press (1999), pp. 611–635.Google Scholar
  42. 42.
    D. R. Kaplan and F. D. Miller, “Neurotrophin signal transduction in the nervous system,” Curr. Opin. Neurobiol., 10, 381–391 (2000).CrossRefPubMedGoogle Scholar
  43. 43.
    S. G. Kernie, D. J. Liebl, and L. F. Parada, “BDNF regulates eating behavior and locomotor activity in mice,” EMBO J., 19, No. 6, 1290–1300 (2000).CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    A. B. Klein, M. A. Santini, S. Aznar, et al., “Changes in 5-HT2C-mediated behavior and 5-HT2A and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knockout mice,” Neuroscience, 169, 1007–1016 (2010).CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    M. Korte, P. Carroll, E. Wolf, et al., “Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor,” Proc. Natl. Acad. Sci. USA, 92, No. 19, 8856–8860 (1995).CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    A. V. Kulikov, D. V. Bazovkina, E. M. Kondaurova, and N. K. Popova, “Genetic structure of hereditary catalepsy in mice,” Genes Brain Behav., 7, 506–512 (2008).CrossRefPubMedGoogle Scholar
  47. 47.
    B. W. Lau, S. Y. Yau, T. M. Lee, et al., “Intracerebroventricular infusion of cytosine-arabinoside causes prepulse inhibition disruption,” Neuroreport, 20, 371–377 (2009).CrossRefPubMedGoogle Scholar
  48. 48.
    R. Levi-Montalcini, “The nerve growth factor: thirty-five years later,” EMBO J., 6, 1145–1154 (1987).PubMedCentralPubMedGoogle Scholar
  49. 49.
    G. A. Light and D. I. Braff, “Human and animal studies of schizophrenia-related gating deficits,” Curr. Psychiatry Reports, 1, 31–40 (1999).CrossRefGoogle Scholar
  50. 50.
    B. Lu, “BDNF and activity-dependent synaptic modulation,” Learn. Mem., 10, 86–98 (2003).CrossRefPubMedGoogle Scholar
  51. 51.
    K. Ludewig, M. A. Geyer, and F. X. Follenweider, “Deficits in prepulse inhibition and habituation in never-medicated, first-episode schizophrenia,” Biol. Psychiatry, 54, 121–128 (2003).CrossRefPubMedGoogle Scholar
  52. 52.
    J. N. Lugo, M. D. Marino, J. T. Gass, et al., “Ethanol exposure during development reduces resident aggression and testosterone in rats,” Physiol. Behav., 87, No. 2, 330–337 (2006).CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    W. E. Lyons, L. A. Mamounas, G. A. Ricarute, et al., “Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities,” Proc. Natl. Acad. Sci. USA, 96, No. 26, 15,239–15,244 (1999).CrossRefGoogle Scholar
  54. 54.
    A. K. McAllister, L. C. Katz, and D. C. Lo, “Neurotrophins and synaptic plasticity,” Annu. Rev. Neurosci., 22, 295–318 (1999).CrossRefPubMedGoogle Scholar
  55. 55.
    L. R. Meek, K. M. Schulz, and C. A. Keith, “Effects of prenatal stress on sexual partner preference in mice,” Physiol. Behav., 89, No. 2, 133–138 (2006).CrossRefPubMedGoogle Scholar
  56. 56.
    C. Murgatroyd, A. V. Patchev,Y. Wu, et al., “Dynamic DNA methylation programs persistent adverse effect of early-life stress,” Nat. Neurosci., 12, 1559–1566 (2009).CrossRefPubMedGoogle Scholar
  57. 57.
    R. L. Myers, D. C. Airey, D. H. Manier, et al., “Polymorphisms in the regulatory region of the human serotonin 5-HT2A receptor gene (HTR2A) influence gene expression,” Biol. Psychiatry, 61, 167–173 (2007).CrossRefPubMedGoogle Scholar
  58. 58.
    A. H. Nagahara, D. A. Merill, G. Coppola, et al., “Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease,” Nat. Med., 15, No. 3, 331–337 (2009).CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    E. V. Naumenko, “Modification in early ontogenesis of the stress response of adults,” News Physiol. Sci., 6, 219–223 (1991).Google Scholar
  60. 60.
    V. S. Naumenko, D. V. Bazovkina, M. V. Morozova, and N. K. Popova, “Effects of brain-derived and glial cell line-derived neurotrophic factor on startle response and disrupted prepulse inhibition in mice of DBA/2J inbred strain,” Neurosci. Lett. (2013) (in press).Google Scholar
  61. 61.
    V. S. Naumenko, E. V. Kondaurova, D. V. Bazovkina, et al., “Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains,” Neurosci., 214, 59–67 (2012).CrossRefGoogle Scholar
  62. 62.
    E. W. Neeley, R. Berger, J. Koenig, and S. Leonard, “Prenatal stress differently alters brain-derived neurotrophic factor expression and signaling across rat strains,” Neurosci., 187, 24–35 (2011).CrossRefGoogle Scholar
  63. 63.
    M. Nibuya, S. Morinobu, and R. S. Duman, “Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments,” J. Neurosci., 15, No. 11, 7539–7547 (1995).PubMedGoogle Scholar
  64. 64.
    B. Olivier, C. Leahy, T. Mullen, et al., “The DBA/2J strain and prepulse inhibition of startle: a model system to test antipsychotics?” Psychopharmacology (Berlin), 156, 284–290 (2001).CrossRefGoogle Scholar
  65. 65.
    F. Papaleo, J. L. Silverman, J. Aney, et al., “Working memory deficits, increased anxiety-like traits, and seizure susceptibility in BDNF overexpressing mice,” Learn. Mem., 18, 534–544 (2011).CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    R. Paylor and J. N. Crawley, “Inbred strain differences in prepulse inhibition of the mouse startle response,” Psychopharmacology (Berlin), 132, 169–180 (1997).CrossRefGoogle Scholar
  67. 67.
    O. C. Pereira, M. M. Bernardi, and D. C. Gerardin, “Could neonatal testosterone replacement prevent alterations induced by prenatal stress in male rats?” Life Sci., 78, No. 24, 2767–2771 (2006).CrossRefPubMedGoogle Scholar
  68. 68.
    N. K. Popova, V. S. Naumenko, M. A. Tibeikina, and A. V. Kulikov, “Serotonin transporter, 5-HT1A receptor, and behavior in DBA/2J mice in comparison with four inbred mouse strains,” J. Neurosci. Res., 87, 3649–3657 (2009).CrossRefPubMedGoogle Scholar
  69. 69.
    N. K. Popova, M. V. Morozova, and T. G. Amstislavskaya, “Prenatal stress and ethanol exposure produces inversion of sexual partner preference in mice,” Neurosci. Lett., 489, No. 1, 48–52 (2011).CrossRefPubMedGoogle Scholar
  70. 70.
    N. K. Popova, M. V. Morozova, and V. S. Naumenko, “Ameliorative effect of BDNF on prenatal stress and ethanol exposure-induced behavioral disorders,” Neurosci. Lett., 505, No. 2, 82–86 (2011).CrossRefPubMedGoogle Scholar
  71. 71.
    A. Riccio, S. Ahn, C. M. Davenport, et al., “Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons,” Science, 286, 2358–2361 (1999).CrossRefPubMedGoogle Scholar
  72. 72.
    J. J. Rodriguez, H. A. Davies, A. T. Silva, et al., “Long-term potentiation in the rat dentate gyrus is associated with enhanced Arc/Arc3.1 protein expression in spines, dendrites and glia,” Eur. J. Neurosci., 21, No. 9, 2384–2396 (2005).CrossRefPubMedGoogle Scholar
  73. 73.
    Z. Ragoz and B. Legutko, “Combined treatment with imipramine and metyrapone induces hippocampal and cortical brain-derived neurotrophic factor gene expression in rats,” Pharmacol. Rep., 57, 849–844 (2005).Google Scholar
  74. 74.
    T. L. Roth and J. D. Sweatt, “Epigenetic marking on the BDNF genes by early-life adverse experiences,” Horm. Behav., 50, 315–320 (2011).CrossRefGoogle Scholar
  75. 75.
    A. L. Sanchez, B. J. Matthews, M. M. Meynard, et al., “BDNF increases synapse density in dendrites of developing tectal neurons in vivo,” Development, 133, 2477–2486 (2006).CrossRefPubMedGoogle Scholar
  76. 76.
    P. M. Schwartz, P. R. Borghesani, R. L. Levy, et al., “Abnormal cerebellar development and foliation in BDNF–/– mice reveals a role for neurotrophins in CNS patterning,” Neuron, 19, No. 2, 269–281 (1997).CrossRefPubMedGoogle Scholar
  77. 77.
    R. A. Segal, “Selectivity in neurotrophin signaling: theme and variations,” Annu. Rev. Neurosci., 26, 299–330 (2003).CrossRefPubMedGoogle Scholar
  78. 78.
    J. K. Simosky, K. E. Stevens, W. R. Kem, and R. Freedman, “Intragastric DMXB-A, an alpha7 nicotinic agonist, improves deficient sensory inhibition in DBA/2 mice,” Biol. Psychiatry, 50, 493–500 (2001).CrossRefPubMedGoogle Scholar
  79. 79.
    J. A. Siuciak, C. Boylan, M. Fritsche, and R. M. Lindsay, “BDNF increases monoaminergic activity in rat brain following intracerebroventricular or intraparenchymal administration,” Brain Res., 710, No. 1–2, 11–20 (1996).CrossRefPubMedGoogle Scholar
  80. 80.
    J. Soule, E. Messaoudi, and C. R. Bramham, “Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain,” Biochem. Soc. Trans., 34, No. 4, 600–604 (2006).CrossRefPubMedGoogle Scholar
  81. 81.
    O. Steward, C. S. Wallace, G. L. Lyford, and P. F. Worley, “Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites,” Neuron, 21, No. 4, 741–751 (1998).CrossRefPubMedGoogle Scholar
  82. 82.
    N. R. Swerdlow, C. H. Benbow, S. Zisook, et al., “A preliminary assessment of sensorimotor gating in patients with obsessive compulsive disorder,” Biol. Psychiatry, 33, 298–301 (1993).CrossRefPubMedGoogle Scholar
  83. 83.
    N. R. Swerdlow, K. Ludewig, M. A. Geyer, and F. X. Vollenweider, “Deficits in prepulse inhibition and habituation in never-medicated, first-episode schizophrenia,” Biol. Psychiatry, 54, 121–128 (2003).CrossRefGoogle Scholar
  84. 84.
    M. Takahashi, A. Kakita, T. Futamura, et al., “Sustained brain-derived neurotrophic factor up-regulation and sensorimotor gating abnormality induced by postnatal exposure to phencyclidine: comparison with adult treatment,” J. Neurochem., 99, 770–780 (2006).CrossRefPubMedGoogle Scholar
  85. 85.
    H. K. Teng, K. K. Teng, R. Lee, et al., “ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin,” J. Neurosci., 25, No. 22, 5455–5463 (2005).CrossRefPubMedGoogle Scholar
  86. 86.
    M. A. Tikhonova, A. V. Kulikov, D. V. Bazovkina, et al., “Antidepressant-like effect of central BDNF administration in mice of Antidepressant-Sensitive Catalepsy (ASC) strain,” Chinese J. Physiol., 55, No. 4, 115–125 (2012).Google Scholar
  87. 87.
    F. Vanevski and B. Xu, “Molecular and neural bases underlying roles of BDNF in the control of body weight,” Front. Neurosci., 7, 37 (2013).CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    C. T. Wang, H. A. Shui, R. L. Huang, et al., “Sexual motivation is demasculinized, but not feminized, in prenatally stressed male rats,” Neuroscience, 138, No. 2, 357–364 (2006).CrossRefPubMedGoogle Scholar
  89. 89.
    I. L. Ward, “Prenatal stress feminizes and demasculinizes the behavior of males,” Science, 175, 82–84 (1972).CrossRefPubMedGoogle Scholar
  90. 90.
    I. L. Ward, O. L. Ward, R. J. Winn, and D. Bielawski, “Male and female sexual behavior potential of male rats prenatally exposed to the influence of alcohol, stress or both factors,” Behav. Neurosci., 108, No. 6, 1188–1195 (1994).CrossRefPubMedGoogle Scholar
  91. 91.
    O. B. Ward, I. L. Ward, J. H. Denning, et al., “Hormonal mechanisms underlying aberrant sexual differentiation in male rats prenatally exposed to alcohol, stress, or both,” Arch. Sex. Behav., 31, No. 1, 9–16 (2002).CrossRefPubMedGoogle Scholar
  92. 92.
    N. H. Woo, H. K. Teng, C. Siao, et al., “Activation of p75NTR by proBDNF facilitates hippocampal long-term depression,” Nat. Neurosci., 8, 1069–1077 (2005).CrossRefPubMedGoogle Scholar
  93. 93.
    C.-M. Yeh, C. Huang, and K.-S. Hsu, “Prenatal stress alters hippocampal synaptic plasticity in young rat offspring through preventing the proteolytic conversion of pro-BDNF to mature BDNF,” J. Physiol., 590, 1309–1310 (2012).CrossRefGoogle Scholar
  94. 94.
    Y. Yin, G. M. Edelman, and P. W. Vanderkish, “The brain-derived neurotrophic factor enhances synthesis of Arc in synaptoneurosomes,” Proc. Natl. Acad. Sci. USA, 99, No. 4, 2368–2373 (2002).CrossRefPubMedCentralPubMedGoogle Scholar
  95. 95.
    R. Zanardi, F. Artigas, R. Moresco, et al., “Increased 5-hydroxytryptamine-2 receptor binding in the frontal cortex of depressed patients responding to paroxetine treatment: a positron emission tomography scan study,” J. Clin. Psychopharmacol., 21, 53–58 (2001).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations