Neuroscience and Behavioral Physiology

, Volume 45, Issue 4, pp 458–464 | Cite as

Dopamine-NO Interactions in the Nucleus Accumbens during Stress-Induced Inhibition of Exploratory Behavior


Experiments on Sprague–Dawley rats using vital intracerebral microdialysis showed that stress accompanied by the acquisition of a conditioned reflex fear reaction leads, at one day, to inhibition of exploratory activity and reductions in exploratory activity-induced increases in extracellular citrulline level (citrulline is a coproduct of NO synthesis) in the nucleus accumbens). Administration of the D2 dopamine receptor antagonist raclopride (10 μM) after acquisition of the conditioned reflex fear reaction led, one day after administration, to recovery of the parameters of exploratory behavior and reversal o the increase in the extracellular citrulline level in the nucleus accumbens accompanying this behavior. These data provide the first evidence that inhibition of exploratory behavior by previously experienced stress may be mediated by a stress-induced decrease the activity of the nitrergic system of the nucleus accumbens formed with the involvement of dopamine D2 receptors in this structure.


citrulline exploratory behavior nucleus accumbens vital intracerebral microdialysis dopamine-NOergic interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Savel’ev, N. S. Repkina, and N. B. Saul’skaya, “A sensitive method for assay of citrulline for vital monitoring of nitric oxide production in the CNS,” Ros. Fiziol. Zh., 91, No. 5, 587–591 (2005).Google Scholar
  2. 2.
    N. B. Saul’skaya and Ya. V. Belozerov, “Danger signals inhibit nitrergic activation of the nucleus accumbens induced by exploratory behavior,” Zh. Vyssh. Nerv. Deyat., 62, No. 4, 475–484 (2012).Google Scholar
  3. 3.
    N. B. Saul’skaya and P. V. Sudorgina, “Effects of blockade of dopamine D2 receptors on the activity of the nitrergic system of the nucleus accumbens in the rat brain,” Ros. Fiziol. Zh., 98, No. 3, 14–20 (2012).Google Scholar
  4. 4.
    N. B. Saul’skaya and P. V. Sudorgina, “Mediolateral gradient in the nitrergic activation of the nucleus accumbens during exploratory behavior,” Ros. Fiziol. Zh., 98, No. 4, 461–468 (2012).Google Scholar
  5. 5.
    N. B. Saul’skaya and E. A. Terekhova, “Synergistic activation of the nitrergic system of the nucleus accumbens by dopamine D1 and D2 receptor agonists,” Ros. Fiziol. Zh., 98, No. 7, 819–826 (2012).Google Scholar
  6. 6.
    C. W. Berridge and A. J. Dunn, “Restraint stress-induced changes in exploratory behavior appear to be mediated by norepinephrine-stimulated release of CRF,” J. Neurosci., 9, No. 10, 3513–3521 (1989).PubMedGoogle Scholar
  7. 7.
    M. R. Campioni, M. Xu, and D. S. McGehee, “Stress-induced changes in nucleus accumbens glutamate synaptic plasticity,” J. Neurophysiol., 101, No. 6, 3192–3198 (2009).CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    S. A. Cavigelli and M. K. McClintock, “Fear of novelty in infant rats predicts adult corticosterone dynamics and an early death,” Proc. Natl. Acad. Sci. USA, 100, No. 26, 1631–1636 (2003).CrossRefGoogle Scholar
  9. 9.
    S. J. French and H. Hartung, “Nitrergic tone influences activity of both ventral striatum projection neurons and interneurons,” in: The Basal Ganglia, H. J. Groenewegen et al. (eds.), Springer Verlag, Berlin (2009), 9th ed., pp. 337–350.Google Scholar
  10. 10.
    S. J. French, G. P. Ritson, S. Hidaka, and S. Totterdell, “Nucleus accumbens nitric oxide immunoreactive interneurons receive nitric oxide and ventral subicular afferents in rats,” Neuroscience, 135, No. 1, 121–131 (2005).CrossRefPubMedGoogle Scholar
  11. 11.
    J. Garthwaite, “Glutamate, nitric oxide, and cell-cell signaling in the nervous system,” Trends Neurosci., 14, No. 1, 60–67 (1991).CrossRefPubMedGoogle Scholar
  12. 12.
    S. Hidaka and S. Totterdell, “Ultrastructural features of the nitric oxide synthase-containing interneurons in the nucleus accumbens and their relationship with tyrosine hydroxylase-containing terminals,” J. Comp. Neurol., 431, No. 2, 139–154 (2001).CrossRefPubMedGoogle Scholar
  13. 13.
    M. D. Humphries and T. J. Prescott, “The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward,” Progr. Neurobiol., 90, No. 4, 385–417 (2010).CrossRefGoogle Scholar
  14. 14.
    M. M. Kraus and H. Prast, “Involvement of nitric oxide, cyclic GMP and phosphodiesterase 5 in excitatory amino acid and GABA release in the nucleus accumbens evoked by activation of the hippocampal fimbria,” Neuroscience, 112, No. 2, 331–342 (2002).CrossRefPubMedGoogle Scholar
  15. 15.
    M. Legault and R. A. Wise, “Novelty-evoked elevations of nucleus accumbens dopamine: dependence on impulse flow from the ventral subiculum and glutamatergic neurotransmission in the ventral tegmental area,” Eur. J. Neurosci., 13, No. 4, 819–828 (2001).CrossRefPubMedGoogle Scholar
  16. 16.
    J. E. Lisman and A. A. Grace, “The hippocampal-VTA loop: controlling the entry of information into long-term memory,” Neuron, 46, No. 5, 703–713 (2005).CrossRefPubMedGoogle Scholar
  17. 17.
    L. Prut and C. Belzung, “The open field as a paradigm of the effects of drugs on anxiety-like behavior: a review,” Eur. J. Pharmacol., 463, No. 1–3, 3–33 (2003).CrossRefPubMedGoogle Scholar
  18. 18.
    N. B. Saulskaya and N. V. Fofonova, “Effects of N-methyl-D-aspartate on extracellular citrulline level in the rat nucleus accumbens,” Neurosci. Lett., 407 No. 1, 91–95 (2006).CrossRefPubMedGoogle Scholar
  19. 19.
    N. B. Saulskaya, N. V. Fofonova, P. V. Sudorghina, and S. A. Saveliev, “Dopamine D1 receptors-dependent regulation of extracellular citrulline level in the rat nucleus accumbens during conditioned fear response,” Neurosci. Lett., 440, No. 2, 185–189 (2008).CrossRefPubMedGoogle Scholar
  20. 20.
    R. Scornaiencki, R. Cantrup, W. J. Rushlow, and N. Rajakumar, “Prefrontal cortical D1 dopamine receptors modulate subcortical D2 dopamine receptor-mediates stress responsiveness,” Int. J. Neuropsychopharmacol., 12, No. 9, 1195–1208 (2009).CrossRefPubMedGoogle Scholar
  21. 21.
    H. R. Sim, T. Y. Choi, H. J. Lee, et al., “Role of dopamine D2 receptors in plasticity in stress-induced addictive behaviors,” Nature Comm., 4, 1579 (2013).CrossRefGoogle Scholar
  22. 22.
    H. H. Van Dijken, J. A. M. Van Der Heyden, J. Mos, and F. J. H. Tilders, “Inescapable footshocks induce progressive and long-lasting behavioural changes in male rats,” Physiol. Behav., 51, No. 4, 787–794 (1992).CrossRefPubMedGoogle Scholar
  23. 23.
    P. Weyers, D. B. Bower, and W. H. Vogel, “Relationships of plasma catecholamines to open field behavior after inescapable shock,” Neuropsychobiology, 22, No. 2, 108–116 (1989).CrossRefPubMedGoogle Scholar
  24. 24.
    D. H. Zald, R. I. Cowan, P. Riccardi, et al., “Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans,” J. Neurosci., 28, No. 53, 1472–1478 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations