Advertisement

Neuroscience and Behavioral Physiology

, Volume 44, Issue 7, pp 810–816 | Cite as

Involvement of the Wnt Signal Pathway in Hippocampal Plasticity

  • V. A. Markevich
  • S. V. Salozhin
  • N. V. Gulyaeva
Article
  • 95 Downloads

The Wnt signal pathway is a signal mechanism in which the key transmitter molecules are peptides of the Wnt family. This review analyzes data on the involvement of this transmembrane signal cascade (canonical and noncanonical) in structural and synaptic plasticity processes in the hippocampus. The mechanisms of the involvement of the Wnt signal pathway in the normal functioning of neuroplasticity is discussed, as are impairments to these mechanisms underlying cerebral pathologies. Particular attention is paid to what is from the points of view of plasticity and neuropathology one of the most important components of the canonical Wnt pathway – the enzyme glycogen synthase kinase (GSK-3β). Studies in this area have fundamental value as well as significant potential for translation, and the key components of the Wnt pathway are potential targets for the development of pathogenetically based treatments for socially important neurological and mental diseases.

Keywords

hippocampus synaptic plasticity Wnt β-catenin glycogen synthase kinase 3β 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. Avila, F. J. Sepulveda, C. F. Burgos, et al., “Canonical Wnt3a modulates intracellular calcium and enhances excitatory neurotransmission in hippocampal neurons,” J. Biol. Chem., 285, No. 24, 18,939–18,947 (2010).CrossRefGoogle Scholar
  2. 2.
    V. Beaumont, S. A. Thompson, F. Choudhry, et al., “Evidence for an enhancement of excitatory transmission in adult CNS by Wnt signaling pathway modulation,” Mol. Cell. Neurosci., 35, No. 4, 513–524 (2007).PubMedCrossRefGoogle Scholar
  3. 3.
    F. Cai, F. Wang, F. K. Lin, et al., “Redox modulation of long-term potentiation in the hippocampus via regulation of the glycogen synthase kinase-3beta pathway,” Free Radic. Biol. Med., 45, No. 7, 964–970 (2008).PubMedCrossRefGoogle Scholar
  4. 4.
    W. Cerpa, A. Gambrill, N. C. Inestrosa, and A. Barria, “Regulation of NMDA-receptor synaptic transmission by Wnt signaling,” J. Neurosci., 31, No. 26, 9466–9471 (2011).PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    J. Chen, C. S. Park, and S. J. Tang, “Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation,” J. Biol. Chem., 281, No. 17, 11,910–11,916 (2006).CrossRefGoogle Scholar
  6. 6.
    L. Conboy, C. M. Seymour, M. P. Monopoli, et al., “Notch signaling becomes transiently attenuated during long-term memory consolidation in adult Wistar rats,” Neurobiol. Learn. Mem., 88, No. 3, 342–351 (2007).PubMedGoogle Scholar
  7. 7.
    I. Dewachter, L. Ris, S. Croes, et al., “Modulation of synaptic plasticity and Tau phosphorylation by wild-type and mutant presenilin1,” Neurobiol. Aging, 29, No. 5, 639–652 (2008).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Du, Y. Wei, L. Liu, et al., “A kinesin signaling complex mediates ability of GSK-3beta to affect mood-associated behaviors,” Proc. Natl. Acad. Sci. USA, 107, No. 25, 11,573–11,578 (2010).CrossRefGoogle Scholar
  9. 9.
    C. Fuerer and R. Nusse, “Lentiviral vectors to prove and manipulate the Wnt signaling pathway,” PLoS One, 5, No. 2, e9370 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    K. P. Giese, “GSK-3: a key player in neurodegeneration and memory,” IUBMB Life, 61, No. 5, 516–521 (2009).PubMedCrossRefGoogle Scholar
  11. 11.
    I. A. Graef, P. G. Mermelstein, K. Stankunas, et al., “L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons,” Nature, 401, No. 6754, 703–708 (1999).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Gómez Ravetti, O. A. Rosso, R. Berretta, and P. Moscato, “Uncovering molecular biomarkers that correlate cognitive decline with the changes of hippocampus’ gene expression profiles in Alzheimer’s disease,” PLoS One, 5, No. 4, e10153 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    J. G. Hong, D. H. Kim, C. H. Lee, et al., “GSK-3β activity in the hippocampus is required for memory retrieval,” Neurobiol. Learn. Mem., 98, No. 2, 122–129 (2012).PubMedCrossRefGoogle Scholar
  14. 14.
    C. Hooper, V. Markevich, F. Plattner, et al., “Glycogen synthase kinase-3 inhibition is integral to long-term potentiation,” Eur. J. Neurosci., 25, No. 1, 81–86 (2007).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Jessberger, R. E. Clark, N. J. Broadbent, et al., “Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats,” Learn. Mem., 16, No. 2, 147–154 (2009).PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    S. Jimenez, M. Torres, M. Vizuete, et al., “Age-dependent accumulation of soluble amyloid beta (Abeta) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-alpha [sApp(alpha)] by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3beta pathway in Alzheimer’s mouse model,” J. Biol. Chem., 286, No. 21, 18,414–18,425 (2011).CrossRefGoogle Scholar
  17. 17.
    U. G. Kang, M. S. Roh, J. R. Jung, et al., “Activation of protein kinase B (Akt) signaling after electroconvulsive shock in the rat hippocampus,” Prog. Neuropsychopharmacology Biol. Psychiatry, 28, No. 1, 41–44 (2004).CrossRefGoogle Scholar
  18. 18.
    D. U. Kumar and H. Devaraj, “Expression of Wnt3a, β-catenin, cyclin D1, and PCNA in mouse dentate gyrus subgranular zone (SGZ): a possible role of Wnt pathway in SGZ neural stem cell proliferation,” Folia Biol. (Praha), 58, No. 3, 115–120 (2012).Google Scholar
  19. 19.
    S. Li, S. Hong, N. E. Shepardson, D. M. Walsh, et al., “Soluble oligomers of amyloid beta protein facilitate long-term depression by disrupting neuronal glutamate uptake,” Neuron, 62, No. 6, 788–801 (2009).PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    T. Ma, N. Tzavaras, P. Tsokas, et al., “Synaptic stimulation of mTOR is mediated by Wnt signaling and regulation of glycogen synthase,” J. Neurosci., 31, No. 48, 17,537–17,546 (2011).CrossRefGoogle Scholar
  21. 21.
    T. Miyaoka, H. Seno, and H. Ishino, “Increased expression of Wnt-1 in schizophrenic brains,” Schizophr. Res., 38, No. 1, 1–6 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    D. C. Morris, Z. G. Zhang, Y. Wang, et al., “Wnt expression in the adult rat subventricular zone after stroke,” Neurosci. Lett., 418, No. 2, 170–174 (2007).PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    D. H. Oh, Y. C. Park, and S. H. Kim, “Increased glycogen synthase kinase-3β mRNA level in the hippocampus of patients with major depression: a study using the Stanley neuropathology consortium integrative database,” Psychiatry Investig., 7, No. 3, 202–207 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    S. Peineau, S. C. Nicolas, Z. A. Bortolotto, et al., “A systemic investigation of the protein kinases involved in NMDA receptor-dependent LTD: evidence for a role of GSK-3 but not other serine-threonine kinases,” Mol. Brain, 2, 22 (2009).PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    J. Prickaerts, D. Moechars, K. Cryns, et al., “Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania,” J. Neurosci., 26, No. 35, 9022–9029 (2006).PubMedCrossRefGoogle Scholar
  26. 26.
    W. B. Rowe, E. M. Blalock, K. C. Chen, et al., “Hippocampal expression analyses reveal selective association of immediate-early, neuroenergetic, and myelinogenic pathways with cognitive impairment in aged rats,” J. Neurosci., 27, No. 12, 3098–3110 (2007).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Sieber-Blum, “Ontogeny and plasticity of adult hippocampal neural stem cells,” Dev. Neurosci., 25, No. 2–4, 273–278 (2003).PubMedCrossRefGoogle Scholar
  28. 28.
    A. Shruster, T. Ben-Zur, E. Melamed, and D. Offen, “Wnt signaling enhances neurogenesis and improves neurological function after focal ischemic injury,” PLoS One, 7, No. 7, e40843 (2012).PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    R. Silva, A. R. Mesquita, J. Nessa, et al., “Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthase-kinase-3beta,” Neuroscience, 152, No. 3, 656–669 (2008).PubMedCrossRefGoogle Scholar
  30. 30.
    A. M. Stranahan, K. Lee, K. G. Becker, et al., “Hippocampal gene expression patterns underlying the enhancement of memory by running in aged mice,” Neurobiol. Aging, 31, No. 11, 1937–1949 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    A. Szamosi, O. Kelemen, and S. Kéri, “Hippocampal volume and the AKT signaling system in first-episode schizophrenia,” J. Psychiatr. Res., 46, No. 3, 279–284 (2012).PubMedCrossRefGoogle Scholar
  32. 32.
    N. Tabatadze, C. Tomas, R. McGonigal, et al., “Wnt transmembrane signaling and long-term spatial memory,” Hippocampus, 22, No. 6, 1228–1241 (2012).PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    L. Varela-Nallar, V. T. Ramirez, C. Gonzalez-Billault, and N. C. Inestrosa, “Frizzled receptors in neurons: From growth cones to the synapse,” Cytoskeleton (Hoboken), 69, No. 7, 528–534 (2012).CrossRefGoogle Scholar
  34. 34.
    L. Varela-Nallar, I. E. Alfaro, F. G. Serrano, et al., “Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses,” Proc. Natl. Acad. Sci. USA, 107, No. 49, 21,164–21,169 (2010).CrossRefGoogle Scholar
  35. 35.
    L. Varela-Nallar, C. P. Gabowsi, I. E. Alfaro, et al., “Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function,” Neural Dev., 4, 41 (2009).PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    L. C. Wei, Y. X. Ding, Y. H. Liu, et al., “Low-dose radiation stimulates Wnt/β-catenin signaling, neural stem cell proliferation and neurogenesis of the mouse hippocampus in vitro and in vivo,” Curr. Alzheimer Res., 9, No. 3, 278–289 (2012).PubMedCrossRefGoogle Scholar
  37. 37.
    Y. F. Xie, J. C. Belrose, G. Lei, et al., “Dependence of NMDA/GSK-3β mediated plasticity on TRPM2 channels at hippocampal CA3-CA1 synapses,” Mol. Brain, 4, 44 (2011).PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    X. Xu, M. Zhan, W. Dan, et al., “Gene expression atlas of the mouse central nervous system: impact and interactions of age, energy intake and gender,” Genome Biol., 8, No. 11, R234 (2007).PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    R. Zhou, P. Yuan, Y. Wang, et al., “Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers,” Neuropsychopharmacology, 34, No. 6, 1395–1405 (2009).PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    L. Q. Zhu, S. H. Wang, D. Liu, et al., “Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments,” J. Neurosci., 27, No. 45, 12,211–12,220 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. A. Markevich
    • 1
  • S. V. Salozhin
    • 1
  • N. V. Gulyaeva
    • 1
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations